在实际开发中,数据库性能往往是系统性能的瓶颈之一。MyBatis-Plus 作为 MyBatis 的增强工具,提供了许多便捷的功能,但在高并发、大数据量的场景下,仍然需要对性能进行优化。本文将围绕常见的 SQL 性能瓶颈、缓存的使用、性能分析插件以及批量操作与分页优化等方面,分享 MyBatis-Plus 的性能优化实践。
1. 常见的 SQL 性能瓶颈分析
1.1 慢查询
慢查询是数据库性能的常见瓶颈之一。以下是一些可能导致慢查询的原因:
- 未使用索引:查询条件中的字段没有索引,导致全表扫描。
- 复杂查询:多表关联查询、子查询等复杂操作可能导致性能下降。
- 数据量过大:单表数据量过大,查询效率降低。
优化建议:
- 为查询条件中的字段添加索引。
- 尽量避免复杂的多表关联查询,可以通过冗余字段或缓存优化。
- 对大表进行分库分表。
1.2 N+1 查询问题
在 MyBatis 或 MyBatis-Plus 中,如果查询主表数据后,再循环查询关联表数据,会导致 N+1 查询问题。
假设有两个表:User(用户表)和 Order(订单表),一个用户可以有多个订单。当我们查询所有用户及其订单的时候,可能会写出以下代码:
- 1.先查询所有的用户(1 次查询)。
- 2.对于每个用户,查询其订单(N 次查询)。
这样总的查询次数为 1(用户的查询次数)+N(订单查询),即 N+1 次查询。如果用户表有 1000 条数据,订单表有 10000 条数据,那么总的查询次数为 1001 次,性能会非常差。
1.2.1 示例场景
假设有以下两个实体类:
用户表(User)
@Data
public class User {
private Long id;
private String username;
private List<Order> orders; //用户的订单列表
}
订单表(Order)
@Data
public class Order {
private Long id;
private String orderNumber;
private Long userId; // 用户 ID
}
查询代码
List<User> users = userMapper.selectList(null);
for (User user : users) {
List<Order> orders = orderMapper.selectByUserId(user.getId());
user.setOrders(orders);
}
1.2.2 N+1查询问题的危害
-
- 性能底下
- 每次查询都会与数据库建立连接、执行 SQL、返回结果,频繁的数据库交互会导致性能急剧下降。
- 如果数据有 1000 条数据,订单表有 10000 条数,总查询次数为 1001 次,性能无法接受。
-
- 数据库压力大
- 频繁的查询会增加数据库的负载,尤其在高并发场景下,可能导致数据库崩溃。
-
- 代码可维护性差
- N+1 查询问题通常隐藏在代码中,不易被发现,增加了维护成本。
1.2.3 优化建议:
- 使用 JOIN 查询
通过 JOIN 查询一次性获取主表和关联表的数据,避免多次查询。
示例代码
在 Mybatis-Plus 中,可以通过自定义 SQL 实现 JOIN 查询
<!-- UserMapper.xml -->
<select id="selectUserWithOrders" resultMap="userOrderMap">
select
u.id as user_id,
u.username,
o.id as order_id,
o.order_number
from
user u
left join
order o
on
u.id = o.user_id
</select>
<resultMap id="userOrderMap" type="User">
<id</