
数据库
文章平均质量分 90
数据库知识学习分享,即聚焦与热点,也普及冷门
drebander
共思共享共建,一起玩,代表作 微信小程序:文案提取F
展开
-
扩展 MyBatis-Plus 支持的查询条件
MyBatis-Plus 支持通过@Select@Update@Insert@Delete注解实现自定义 SQL 查询。在中定义自定义 SQL:</在UserMapper接口中定义自定义查询方法。订单表(Order)@Data订单项表(OrderItem)@Data通过扩展 MyBatis-Plus 支持的查询条件,可以满足复杂的业务需求。自定义 SQL 查询:通过注解或 XML 实现复杂的 SQL 查询。Lambda 查询与条件构造器扩展。原创 2025-03-11 14:34:28 · 473 阅读 · 0 评论 -
Spring之分布式事务解决方案:Seata
的分支事务纳入到全局事务的管理中。转载 2025-03-05 11:54:27 · 25 阅读 · 0 评论 -
Docker 与数据库:MySQL、PostgreSQL、MongoDB 容器化
对于生产环境中的数据库,考虑使用数据库的主从复制、集群等功能,保证服务的高可用性。技术的普及,将数据库容器化已经成为一种常见的做法。,它们都可以很方便地运行在 Docker 容器中,并享受 Docker 提供的一致性、易于管理和可扩展的优势。Docker 为数据库的容器化提供了一个灵活、高效的解决方案,适合开发、测试和生产环境中的各种需求!:将数据库和应用服务放在 Docker 自定义网络中,保证它们之间的通信更加安全和稳定。将 MongoDB 数据存储到 Docker 卷中,避免容器删除时数据丢失。原创 2025-02-22 10:00:00 · 1038 阅读 · 0 评论 -
是 mysql 分库分表,还是Hive 大数据处理?
Hive是基于Hadoop的一个数据仓库工具,主要用于大规模数据的存储、查询和分析,通常与Hadoop配合使用。(传统关系型数据库解决方案)时,主要考虑的是业务的规模、性能需求、数据类型以及系统的复杂性。下面我会比较这两者的特点、应用场景及适用情况,帮助你做出更合适的选择。MySQL是一种广泛使用的关系型数据库管理系统,分库分表是其常见的扩展方式。它能够支持高并发的OLTP场景,保证数据的一致性,并通过分库分表扩展数据库性能。作为大数据分析平台可能更合适。(大数据解决方案)还是。原创 2025-01-20 10:05:18 · 1016 阅读 · 0 评论 -
多租户支持与企业级应用场景:ShardingSphere 的应用解析
(Multi-TenantArchitecture)是一种软件架构设计,其中多个独立的租户(客户、用户、部门等)共享同一个应用程序实例和数据库资源,每个租户的数据是隔离的。多租户架构广泛应用于SaaS(软件即服务)产品中,特别适用于企业级应用,它能够降低资源浪费,提高系统的可扩展性和成本效益。原创 2025-01-19 22:12:50 · 629 阅读 · 0 评论 -
监控与调试:性能优化的利器 — ShardingSphere
ShardingSphere提供了丰富的监控和调试功能,帮助开发者实时监控数据库性能、调优SQL执行、优化数据库连接池、改进分片策略,并通过动态配置调整数据库的读写负载。ShardingSphere提供了多种监控和调试工具,帮助开发者实时跟踪和优化性能,识别瓶颈,进行故障排查,从而提升系统的稳定性和响应速度。然而,读写分离的效率也取决于配置和负载均衡策略。ShardingSphere提供了SQL执行的性能分析工具,可以帮助开发者查看SQL的执行情况,并识别慢查询、资源消耗大的SQL。原创 2025-01-19 22:04:34 · 1089 阅读 · 0 评论 -
配置管理与动态调整:ShardingSphere 的配置方式与实时调整能力
ShardingSphere提供了强大的配置管理和动态调整能力,支持通过静态配置文件和动态配置中心灵活调整数据库分片策略、数据源配置和读写分离策略。ShardingSphere不仅支持静态配置,还支持动态配置,可以在运行时调整分片规则、数据源配置、读写分离等,而不需要重启应用。例如,在某些高负载的场景下,可能希望调整读写分离策略,增加更多的从库,或者改变主库和从库的分配方式。然后,将这个配置上传到Nacos配置中心,ShardingSphere将在运行时检测到配置变化,并动态更新分片规则。原创 2025-01-19 22:00:00 · 932 阅读 · 0 评论 -
与 Spring Boot 的无缝集成:ShardingSphere 快速集成实践
通过 ShardingSphere 与 Spring Boot 的无缝集成,我们可以在 Spring Boot 应用中轻松实现分库分表、读写分离等功能。它能够与各种应用框架进行集成,其中与 Spring Boot 的集成非常流行,因为它能够帮助开发者在 Spring Boot 项目中快速实现高性能的分布式数据库管理。ShardingSphere 与 Spring Boot 的集成能够简化分布式数据库的使用,同时提供灵活的配置和高效的性能。在集成完成后,可以通过编写测试来验证分库分表和读写分离是否正常工作。原创 2025-01-17 14:28:08 · 1770 阅读 · 0 评论 -
分布式 ID 生成策略:应用场景与 ShardingSphere 实现
ShardingSphere 提供了多种生成 ID 的策略,主要包括雪花算法和基于数据库的自增 ID 生成策略,开发者可以根据实际应用场景选择合适的策略。具体实现中,ShardingSphere 会使用机器 ID 和数据中心 ID 来生成雪花算法所需的组件,确保各个节点生成的 ID 不会发生冲突。在某些情况下,分布式 ID 可以通过数据库的序列来生成,ShardingSphere 也支持通过数据库序列生成 ID。这种方法生成的 ID 是全局唯一的,且可以保证高效地生成,不依赖于集中式服务。原创 2025-01-17 14:26:11 · 805 阅读 · 0 评论 -
ShardingSphere—SQL 路由与执行解析原理
ShardingSphere 的 SQL 路由、解析与执行机制通过灵活的分片规则、强大的语法解析能力和高效的执行引擎,为分布式数据库操作提供了全面支持。理解这些核心机制,有助于开发者更高效地设计分布式数据库架构,并优化系统性能。原创 2025-01-16 15:53:10 · 848 阅读 · 0 评论 -
ShardingSphere 实现数据脱敏
ShardingSphere 的数据加密功能为分布式数据库的安全性提供了强有力的支持。通过灵活的加密规则和多样的算法支持,开发者可以轻松实现敏感数据的保护。无论是个人隐私还是金融数据,ShardingSphere 的加密机制都能满足现代分布式系统的高安全性要求。提供了一套灵活且高效的数据加密解决方案,帮助开发者在分布式环境中实现敏感数据的加密存储和安全访问,从而满足合规性和安全性需求。通过 ShardingSphere 的加密功能,应用层可以直接操作明文数据,而数据库存储的是密文。原创 2025-01-16 15:48:48 · 1645 阅读 · 0 评论 -
ShardingSphere 的弹性计算与分布式事务支持
ShardingSphere 的弹性计算和分布式事务支持,为分布式数据库的高效访问和一致性保障提供了完善的解决方案。在 ShardingSphere 中,弹性计算主要体现在分布式查询与计算中,通过分布式 SQL 的解析、优化和执行,实现弹性扩展和高效查询。ShardingSphere 是一款功能强大的分布式数据库中间件,提供了弹性计算和分布式事务支持能力,能够帮助开发者高效处理分布式数据库中的复杂业务场景。XA 是一种分布式事务协议,保证事务的强一致性,适用于金融等对一致性要求极高的场景。原创 2025-01-15 15:17:50 · 686 阅读 · 0 评论 -
读写分离:实现高效数据库访问
ShardingSphere 的读写分离功能提供了一种简单高效的解决方案,能够显著提升数据库访问性能。读写分离是一种常见的数据库架构优化策略,通过将读操作分散到从数据库,写操作集中到主数据库,从而提高系统的性能和可扩展性。ShardingSphere 读写分离在性能提升和系统稳定性方面具有显著优势,是现代分布式系统的推荐选择之一。以下以 Spring Boot 为例,展示如何配置 ShardingSphere 的读写分离。作为一款强大的分布式数据库中间件,提供了灵活的读写分离功能。原创 2025-01-15 15:12:47 · 722 阅读 · 0 评论 -
分库分表策略详解与实践
分库分表是一项强大的数据库优化技术,通过合理设计分片规则和选择工具(如 ShardingSphere),可以显著提升系统性能和可扩展性。在实践中,需结合业务场景选择合适的分片策略,并关注分布式事务、ID 唯一性和数据迁移等问题,确保分库分表方案的落地和高效运行。分库分表是应对数据库性能瓶颈和大规模数据存储的重要手段,能够有效解决单库、单表的数据量和并发限制问题。:数据量大且分布不均,需同时支持范围查询和均匀分布。:难以按范围查询,需要额外配置查询路由。为例,展示订单表分库分表的具体实现。原创 2025-01-10 11:26:38 · 653 阅读 · 0 评论 -
ShardingSphere 概述:功能与架构设计
无论是分库分表还是读写分离,它都能够大幅提升系统性能,同时通过分布式事务、数据加密等功能增强数据一致性与安全性。ShardingSphere 的核心定位是“数据库增强引擎”,通过透明化分片和读写分离,让开发者在不修改业务逻辑的前提下,轻松应对分布式数据库架构。ShardingSphere 的架构采用插件化设计,各种核心功能(分片、读写分离、加密)均通过独立模块实现,便于扩展与维护。,为应用提供分库分表、读写分离、数据加密等功能,帮助开发者应对大规模数据场景下的性能瓶颈和复杂查询需求。原创 2025-01-10 11:24:18 · 483 阅读 · 0 评论 -
分库分表-基于若依框架实现订单表的分表分库(二)
本文将以订单表为例,详细介绍如何在若依框架中实现分表分库,适应高并发和海量数据场景。通过基于若依框架结合 ShardingSphere 实现订单表的分表分库,系统性能得到了显著提升,尤其在高并发和海量数据场景下。这种方式既兼顾了开发效率,也保证了系统的可扩展性。如需扩展其他业务模块的分库分表逻辑,可复用以上配置模板,并根据具体业务调整分片策略。,它是一个轻量级数据库中间件,支持分库分表、读写分离等功能。接口,插入订单数据,观察是否正确路由到分表。原创 2025-01-09 13:39:10 · 746 阅读 · 1 评论 -
MySQL 分库分表实战(一)
是解决海量数据存储和访问性能问题的常用技术手段,通过将数据拆分到多个库或表中,实现读写分离、负载均衡和水平扩展。在面对大规模数据和高并发访问时,单个数据库或单表可能会成为系统瓶颈,影响系统的性能和可扩展性。分库分表是数据库架构设计中不可或缺的重要技术,合理设计能显著提升系统的稳定性和可扩展性。在应用层或中间件中,需要实现分库分表路由逻辑。:删除 1 年前的历史订单数据,避免长事务阻塞。:分库分表后无法直接执行跨表或跨库查询。原创 2025-01-08 14:40:44 · 1553 阅读 · 0 评论 -
数据库三范式(3NF)详解
是一种规范化的过程,旨在减少数据冗余、提高数据一致性,并优化数据库的存储结构和查询效率。范式通常分为多个级别,其中最常用的是。:通过拆分学生、课程、教师和选课记录表,实现了三范式设计,数据结构清晰,避免冗余和不一致问题。原创 2025-01-08 14:38:48 · 738 阅读 · 0 评论 -
SQL 实现复杂地理围栏 – 多边形区域判断与距离筛选
现代数据库(如 MySQL、PostgreSQL)均支持地理空间数据类型(原创 2025-01-06 18:56:22 · 1719 阅读 · 0 评论 -
在海量数据表中高效更新与删除记录
影响系统性能,甚至引发数据库宕机。因此,如何高效、安全地在大数据量表中执行批量操作是数据库管理中的关键问题。通过合理选择和组合这些策略,可以高效、安全地在海量数据表中执行更新与删除操作,确保系统性能稳定可靠。在实际业务中,对于超大表进行批量更新或删除操作是一项具有挑战性的任务。:删除未登录超过 1 年的用户,但保留活跃用户数据。:将数据按月份分区,每月自动清理 1 年前的数据。表中超过 1 年未登录的用户记录。:将 1 年未登录用户标记为。原创 2025-01-06 18:47:05 · 1056 阅读 · 0 评论 -
数据去重与重复数据的高效处理策略
在实际业务中,数据去重是一个非常常见的需求,特别是在日志数据、用户操作记录或交易记录等领域。去重不仅仅是删除重复数据,更重要的是。通过合理选择去重策略,可以确保数据的唯一性和完整性,同时提升数据库查询性能,保证业务系统的稳定高效运行。是 SQL 窗口函数,可以为每组记录生成唯一的序号,从而方便地保留最新或特定排名的记录。本文将探讨如何在 SQL 中高效地处理重复数据,通过。用于去除表中完全重复的行,适用于整个记录重复的场景。标记重复数据,然后删除排名大于 1 的行。函数,可以保留每组中的最新记录。原创 2025-01-04 20:26:29 · 701 阅读 · 0 评论 -
多字段模糊查询优化与全文索引实践
通过利用全文索引(FULLTEXT)优化多字段模糊查询,解决大表查询性能瓶颈,提升查询效率,特别是在电商平台中的商品搜索场景。原创 2025-01-04 20:19:39 · 641 阅读 · 0 评论 -
SQL 中复杂 CASE WHEN 嵌套逻辑优化
优化复杂的CASE WHEN逻辑,提升 SQL 语句的可读性与执行效率,减少多层嵌套带来的复杂性。原创 2025-01-03 18:50:42 · 836 阅读 · 0 评论 -
SQL 分析函数与聚合函数的组合应用
掌握 SQL 中分析函数(窗口函数)与聚合函数的组合使用,通过实际案例实现复杂业务需求,如同比、环比和趋势分析。原创 2025-01-03 18:48:55 · 576 阅读 · 0 评论 -
SQL 实战:分页查询的多种方式对比与优化
然而,在数据量较大或复杂查询中,简单的分页方式可能导致性能下降。本文将探讨 SQL 中实现分页查询的不同方式,并对比它们的优缺点,帮助优化大数据量场景下的分页方案。在处理大数据表时,分页查询是非常常见的需求。分页不仅可以提高用户体验,还能有效减少数据库查询返回的数据量,避免一次性加载大量记录引起的性能瓶颈。查询订单表第 21-40 条记录,同时返回总记录数,用于前端分页展示。查询订单表中,按订单金额降序排列的第 51-60 条记录。查询比上次加载时间更早的订单记录,每次加载 20 条记录。原创 2024-12-31 18:49:39 · 1354 阅读 · 0 评论 -
SQL 实战:使用 CTE(公用表达式)优化递归与多层复杂查询
是 SQL 中用于简化复杂查询和递归操作的强大工具。CTE 提供了一种临时结果集,可以在查询中多次引用,避免重复代码,提高查询的可读性和维护性。WITHcte_nameUNION ALL在用户管理系统中,每个用户可能通过其他用户推荐注册。我们需要生成用户推荐树,展示层级关系,并计算每个用户对应层级的奖励金额。原创 2024-12-30 20:20:10 · 1516 阅读 · 0 评论 -
SQL 实战:基于经纬度的距离计算与位置查询
在位置服务(LBS)系统中,基于地理位置查询和距离计算是核心功能之一。MySQL 提供了多种方式实现地理位置查询,包括 ST_Distance_Sphere()和经典的。本文将介绍如何使用这两种方式在 MySQL 中进行距离计算与位置筛选。计算从北京天安门到上海外滩的直线距离。查询距离当前定位(广州塔的商铺信息。原创 2024-12-29 11:39:06 · 1306 阅读 · 0 评论 -
SQL 实战:正则表达式匹配 – 高效数据筛选与文本解析
在实际业务中,我们常常需要对存储在数据库中的文本数据进行复杂筛选和解析。MySQL 提供了强大的正则表达式函数,可以批量筛选出符合或不符合特定规则的文本数据,避免手动筛查的低效方式。本篇文章将详细介绍如何使用 REGEXP和 REGEXP_LIKE处理复杂文本匹配需求,通过示例讲解如何高效地筛选手机号、邮箱以及其他格式化文本数据。10REGEXPTRUE在用户管理系统中,需要筛选出手机号格式不符合规则的用户记录。有效的手机号格式:以开头,第二位为3-9,并且长度为 11 位。原创 2024-12-28 22:33:38 · 1146 阅读 · 0 评论 -
深入理解 MySQL 索引
在数据库性能优化中,索引是至关重要的工具,可以显著提升查询速度。然而,如果对索引理解不够深入,可能会导致错误使用,甚至引发性能问题。本文将详细介绍 MySQL 索引的概念、原理、类型,以及常见的使用场景和优化策略。通过对索引的深入理解和合理设计,你可以轻松应对数据库性能问题,最大限度提升 MySQL 查询效率。如果查询的字段全部在索引中,可以通过索引直接返回结果,避免回表操作。对于组合索引,查询必须从索引的最左列开始,否则无法使用索引。在 MySQL 中,不同的存储引擎实现索引的方式有所不同。原创 2024-12-19 17:52:22 · 876 阅读 · 0 评论 -
SQL 实战:日期与时间函数 – 统计数据的时间跨度与趋势
在数据分析中,时间维度通常是分析的核心,尤其是当我们需要基于日期和时间进行统计、趋势分析时。SQL 提供了丰富的日期与时间函数,帮助我们从原始数据中提取时间信息,计算时间跨度,进行趋势分析,并最终生成对业务有价值的报告。本文将通过多个实战案例,展示如何使用 SQL 中的日期和时间函数进行时间分析和统计。原创 2024-12-27 23:32:46 · 1462 阅读 · 0 评论 -
MySQL InnoDB 存储引擎详解
InnoDB 是 MySQL 中最常用、最强大的存储引擎之一,其支持事务、外键、行级锁等特性,非常适合对可靠性、并发性要求较高的场景。本文将详细解析 InnoDB 的核心特性、内部机制以及使用场景,帮助你更好地理解和优化 MySQL 数据库。InnoDB 是 MySQL 的核心存储引擎,凭借其对事务、崩溃恢复、高并发的支持,成为绝大多数企业级应用的首选。理解 InnoDB 的内部机制(如事务、锁、日志系统、缓冲池)以及优化方法,是提升 MySQL 数据库性能的关键。InnoDB 将数据存储在。原创 2024-12-22 10:22:34 · 696 阅读 · 0 评论 -
SQL 实战:联合查询与子查询 – 数据比对与关联查询优化
在复杂的数据分析和开发场景中,我们经常需要对多张表的数据进行比对和关联查询,以满足复杂业务需求。我们希望找出购买了商品 A 但从未购买商品 B 的用户,以便进行针对性的营销活动。主要用于多表之间的行级数据关联,可以根据相关字段将多张表的数据合并在一起。| 101 | 1 | 商品A || 104 | 3 | 商品A || 105 | 3 | 商品B |查询的结果合并到一起,返回去重后的记录。原创 2024-12-28 17:39:06 · 1480 阅读 · 0 评论 -
MySQL 的事务与锁机制详解
事务(Transaction)是指一组数据库操作的集合,这些操作要么全部成功,要么全部失败。事务确保了数据库操作的。原创 2024-12-20 16:56:37 · 1065 阅读 · 0 评论 -
SQL 实战:窗口函数的妙用 – 分析排名与分组聚合
在复杂的数据分析和查询场景中,SQL 窗口函数(Window Functions)是提升性能和代码可读性的重要工具。窗口函数可以轻松实现排名、分组聚合、滑动平均等复杂计算,避免使用嵌套子查询或冗余的多次表扫描。窗口函数在 SQL 查询中,允许在返回的结果集中基于当前行的前后多行进行计算。窗口函数不会折叠行,而是返回每一行数据,同时增加一个聚合结果列。:获取每个地区的销售员销售额排名,排名相同销售额相等,且不跳名次。:在销售记录表中,计算每个销售员与上一笔订单的销售额差异。原创 2024-12-24 11:56:57 · 902 阅读 · 0 评论 -
MySQL 中的常见错误与排查
无论是查询性能问题、连接异常、数据一致性问题,还是磁盘空间不足等,及时排查并解决这些问题是保证数据库稳定运行的关键。理解 MySQL 内部机制,定期检查和优化数据库配置、查询、索引等,是保障数据库稳定运行的关键。:用户在连接 MySQL 时,系统返回“Access denied”错误。:客户端无法连接到 MySQL 服务器,可能是网络、权限或配置问题。:MySQL 的连接数达到了最大限制,无法再接受新的连接。:内存溢出错误,通常是由于查询过于复杂或数据量过大。:由于死锁,查询无法获得锁,导致事务失败。原创 2024-12-22 11:13:17 · 930 阅读 · 0 评论 -
SQL 实战:聚合函数高级用法 – 多层分组与动态统计
通过嵌套使用。原创 2024-12-27 23:34:38 · 1104 阅读 · 0 评论 -
MySQL 数据备份与恢复详解
无论是系统崩溃、硬件故障还是误操作,及时有效的数据备份可以最大程度地避免数据丢失和业务中断。是 MySQL 自带的逻辑备份工具,可以将数据库导出为 SQL 文件或 CSV 文件。是 MySQL 5.7 之后推出的逻辑备份工具,支持多线程并行备份,性能优于。是一款高效的物理备份工具,支持无锁备份,尤其适用于大型数据库的实时备份。等工具,并结合实际案例讲解如何在数据库崩溃或误删数据后进行恢复操作。:数据库崩溃,无法启动。原创 2024-12-23 11:50:43 · 1124 阅读 · 0 评论 -
MySQL JSON 数据类型详解与实战
本文将深入讲解 MySQL JSON 数据类型的基本使用、操作方法以及性能优化策略,帮助开发者更好地在实际项目中使用 JSON。为了提高查询效率,可以通过**生成列(Generated Column)**创建索引。随着数据存储需求的多样化,JSON 格式因其灵活性和可读性成为主流的数据交换格式之一。为开发者带来了更大的灵活性和便利性,但在实际项目中仍需根据实际需求权衡使用,确保在性能和灵活性之间找到最佳平衡点。MySQL 提供了丰富的 JSON 函数和操作符,可以方便地访问和操作 JSON 字段中的数据。原创 2024-12-23 11:52:09 · 1291 阅读 · 0 评论 -
SQL 实战:动态表创建与多表更新的高级 SQL
在实际的数据库管理和开发中,经常需要临时存储中间计算结果或对多表数据进行批量更新。SQL 提供了动态表创建和多表更新的能力,使复杂业务逻辑能够通过一条 SQL 语句高效完成。通过这些高级 SQL 技巧,可以高效解决多表更新、动态表创建以及复杂数据清洗问题,提高数据库操作的自动化程度和性能。部分用户尚未注册到系统中,我们需要将外部系统的用户数据补充到用户表中,避免遗漏。在大数据量场景中,关联更新涉及表扫描,建议在关联字段上创建索引提升查询速度。表中,但部分用户缺失出生日期。表(外部用户表),希望补充。原创 2024-12-28 17:59:56 · 1202 阅读 · 0 评论 -
SQL 实战—递归 SQL:层级结构查询与处理树形数据
递归 SQL 是指在 SQL 查询中,原创 2024-12-25 10:04:54 · 1946 阅读 · 0 评论