
AI 编程
文章平均质量分 88
drebander
共思共享共建,一起玩,代表作 微信小程序:文案提取F
展开
-
用 ChatGPT + Cursor 极速开发微信小程序:从创意到上线的实战指南
使用 GPT+cursor,完成小程序的设计到落地的实践原创 2025-02-21 19:31:48 · 1598 阅读 · 0 评论 -
chatGpt+cursor 开发微信小程序实战
ai 生成微信小程序原创 2025-02-12 14:41:56 · 2159 阅读 · 0 评论 -
[特殊字符] 基于 FastAPI 和 React 构建车牌号识别网站
提取车牌号码,并将结果展示到前端。同时,用户可以选择不同的 OCR 模型,并查看识别历史记录。,用户可以上传车辆图片,系统会通过。在本项目中,我们将构建一个。原创 2025-02-10 17:47:05 · 486 阅读 · 0 评论 -
Cursor 插件开发:扩展你的 AI 编程工具
实现视图内容深度定制开发环境:集成内部工具链增强 AI 能力:结合领域知识优化代码生成统一团队实践:固化最佳实践到 IDE 层以下是一个企业级插件的扩展方向示例:原创 2025-02-05 18:57:50 · 1481 阅读 · 0 评论 -
Cursor 与团队协作:提升团队开发效率
Cursor 正在重新定义团队协作的“质量基线”——它不仅是代码规范的执行者,更是团队知识的传承者和开发风险的预判者。通过将 AI 能力深度植入编码、审查和交付环节,团队得以将精力从“纠错止损”转向“价值创造”。对于追求高效协作的技术团队而言,拥抱 Cursor 不仅是对工具的升级,更是对协作文化的智能化重塑。原创 2025-02-05 17:34:29 · 993 阅读 · 0 评论 -
Cursor 与多语言开发:全栈开发的利器
Cursor 通过统一的多语言支持,正在打破前端、后端和数据科学之间的技术壁垒。无论是快速生成 React 组件、构建安全的 REST API,还是将数据分析脚本转化为生产代码,开发者都可以在同一工具链中完成。这种“全栈无缝衔接”的体验,不仅提升了开发效率,更重要的是释放了开发者聚焦业务创新的潜力。在 AI 重新定义开发工具的时代,Cursor 已然成为全栈工程师的超级武器库。原创 2025-02-04 17:43:12 · 2211 阅读 · 0 评论 -
调试与错误修复:Cursor 如何成为你的编程助手
Cursor 的调试与错误修复功能,将 AI 的代码理解能力与开发者实践经验深度融合,实现了从“错误发现”到“修复落地”的闭环。无论是新手还是资深工程师,都能通过其实时反馈、精准建议和教学式解释,显著缩短调试时间,提升代码健壮性。在 AI 技术持续渗透软件开发全链路的今天,掌握如 Cursor 这样的智能工具,不仅是效率的提升,更是对开发者核心竞争力的重新定义。原创 2025-02-04 13:59:01 · 1580 阅读 · 0 评论 -
代码优化与重构:Cursor 如何帮你写出更好的代码
Cursor 的代码优化与重构功能,将 AI 的语义理解能力与编程最佳实践相结合,帮助开发者从“能运行的代码”迈向“优雅的代码”。无论是修复性能瓶颈、改善代码风格,还是重构复杂逻辑,Cursor 都能提供精准且可操作的解决方案。对于开发者而言,掌握这一工具不仅意味着效率提升,更是向“工匠精神”迈进的关键一步。原创 2025-02-03 15:38:12 · 2426 阅读 · 0 评论 -
自然语言编程:用 Cursor 将需求转化为代码
Cursor 的自然语言编程功能通过 AI 模型架起了自然语言与代码之间的桥梁,使开发者能够以更直观的方式表达需求并快速生成代码。无论是构建 UI 组件、编写数据处理脚本,还是实现数据可视化,均可通过简单的文本描述驱动开发流程。然而,这一技术并非完全替代开发者,而是作为“智能助手”提升效率。掌握与 AI 协作的技巧(如编写清晰指令、结合上下文迭代优化),将成为未来开发者的核心竞争力。原创 2025-02-03 15:32:31 · 1806 阅读 · 0 评论 -
智能代码补全:Cursor 如何预测你的下一行代码
Cursor 的代码补全功能是其智能编程助手的核心功能之一。通过集成先进的 AI 模型,Cursor 能够理解代码的上下文,并提供精准的补全建议。上下文感知:Cursor 能够分析代码的上下文,捕捉变量、函数和类的定义与使用,提供更精准的补全建议。多语言支持:Cursor 支持多种编程语言(如 Python、JavaScript、Java 等),能够为不同语言的开发者提供智能补全功能。实时响应:Cursor 的代码补全功能能够实时响应开发者的输入,提供即时的补全建议。个性化推荐。原创 2025-02-03 15:27:32 · 958 阅读 · 0 评论 -
Cursor 的 AI 模型:代码生成与理解的原理
Cursor 的 AI 模型是其智能功能的核心驱动力。这些模型基于深度学习技术,能够理解自然语言和编程语言,并生成高质量的代码。自然语言处理(NLP)模型:用于理解开发者的自然语言描述,并将其转换为代码。代码生成模型:基于大规模代码库训练的深度学习模型,能够根据上下文生成高质量的代码。代码补全模型:通过分析代码上下文,提供精准的代码补全建议。代码优化模型:分析现有代码,提出性能优化和重构建议。错误检测与修复模型:实时检测代码中的错误,并提供修复建议。原创 2025-01-31 11:19:25 · 970 阅读 · 0 评论 -
Cursor 背后的技术栈:从 VS Code 到 AI 集成
基于 VS Code 的编辑器核心AI 模型集成层以及本地与云端协同计算框架。以下将逐一分析这些模块的设计与实现。VS Code 的扩展机制基于插件架构,每个插件都可以通过 VS Code 的 API 与编辑器核心进行交互。插件可以扩展编辑器的功能,例如添加新的命令、视图、语言支持等。VS Code 的插件生态系统非常活跃,开发者可以通过安装插件来定制自己的开发环境。Cursor 的技术架构充分体现了 AI 技术在开发者工具中的潜力。原创 2025-01-31 11:15:17 · 782 阅读 · 0 评论 -
Cursor 简介:AI 如何改变编程体验
Cursor 的出现,标志着编程工具进入了一个新的时代。通过 AI 技术的集成,Cursor 不仅提升了开发效率,还改变了传统的编程体验。无论是初学者还是资深开发者,都能从 Cursor 的智能功能中受益。随着 AI 技术的不断发展,Cursor 将继续推动编程工具的进化,帮助开发者更高效、更智能地完成开发任务。原创 2025-01-31 11:11:41 · 1158 阅读 · 0 评论 -
Spring AI 与企业级应用架构的结合
因此,设计一个灵活的服务架构是成功集成 AI 模型的前提。Spring AI 作为 Spring 生态的一部分,可以与 Spring Boot、Spring Cloud、Spring Security 等技术完美集成,使得开发者可以直接利用现有的技术栈进行开发,避免了额外的学习成本。通过 Spring AI,开发者可以通过配置和注入的方式快速使用多种 AI 模型,避免了直接与不同厂商 API 的繁琐交互,同时也能够利用 Spring 生态的强大支持,确保在企业级应用中的可维护性、扩展性与可操作性。原创 2025-01-30 20:09:06 · 1405 阅读 · 0 评论 -
AI 模型优化与性能调优
AI 模型的性能调优不仅是提升推理速度的关键,也是保证系统高效、可扩展运行的重要环节。在 AI 应用中,模型的性能是一个非常重要的考量因素。在保证模型质量的前提下,通过调优提升性能,可以为用户带来更快速、更流畅的体验。AI 模型的优化不仅能提升响应时间,还能减少计算资源的消耗,降低服务成本,并且提升用户体验。量化是指将高精度的模型参数(如浮点数)转换为低精度(如整数)的操作,能够显著减小模型的内存占用并加速推理。模型压缩和剪枝是两种常用的优化技术,通过减少不必要的参数和计算量来提高推理速度和减少存储占用。原创 2025-01-30 20:05:12 · 1392 阅读 · 0 评论 -
构建 AI 驱动的个性化推荐系统
传统的推荐系统主要依赖于协同过滤、基于内容的推荐等方法,而。,我们可以快速构建一个 AI 驱动的个性化推荐系统。,可以大幅提升推荐的精准度和用户体验。我们首先设计数据库来存储用户行为数据和商品信息。提供 REST API,供前端或其他服务调用。在现代应用中,个性化推荐系统已经广泛应用于。在推荐系统中,向量数据库可以存储。,推荐系统将更加智能和高效!,提供更精准的个性化推荐。原创 2025-01-29 19:57:31 · 931 阅读 · 0 评论 -
Spring AI 在微服务中的应用:支持分布式 AI 推理
还是其他 AI 任务中,Spring AI 都能提供灵活、高效的 AI 计算能力,为微服务架构中的 AI 任务提供强大的支持。通过本文的介绍,相信你已经掌握了 Spring AI 在微服务架构中的应用方式,并可以在自己的项目中进行实践!在微服务架构中,Spring AI 提供了强大的 AI 推理能力,可以通过。在实际业务中,AI 推理通常会有较大的计算需求,因此可以采用以下方案。,供其他微服务调用,或者嵌入到多个微服务中,实现分布式推理。,使多个服务可以协同完成 AI 任务,并支持。原创 2025-01-29 18:50:18 · 2418 阅读 · 1 评论 -
实时数据处理与模型推理:利用 Spring AI 实现对数据的推理与分析
例如,对于金融风控系统,可以使用多个模型进行并行推理,从而提供更加准确的评估结果。实现实时数据的获取、处理和基于 AI 模型的推理与分析。,我们不仅可以高效地获取实时数据,还可以将这些数据输入到 AI 模型中进行推理与分析,以便生成实时的业务洞察。在电商平台中,基于实时用户行为数据(如浏览、点击、购买等),我们可以为用户实时推荐相关商品。在金融行业,实时获取用户交易数据并通过 AI 模型进行风险评估,可以有效预防欺诈行为。在工业领域,实时监控设备状态数据,并基于 AI 模型进行预测,以便及时采取措施。原创 2025-01-28 21:26:49 · 1486 阅读 · 0 评论 -
利用 PyTorch 动态计算图和自动求导机制实现自适应神经网络
通过利用 PyTorch 的动态计算图和自动求导机制,可以实现一个能够自动调整结构的神经网络。实现过程中需要结合复杂度评估方法、动态调整策略以及优化技巧,最终让模型在适应任务复杂度的同时,提升性能与效率。原创 2025-01-28 10:14:06 · 940 阅读 · 0 评论 -
智能客服系统:结合 AI 模型与数据库实现对话与知识检索
向量数据库和生成式 AI 模型,可以构建一个强大的智能客服系统,实现高效的知识检索和自然语言对话。这样的系统在企业知识管理、客户支持和法律辅助等领域有着广泛的应用前景,为用户提供更加智能、精准和高效的服务体验。,可以构建一个能够高效回答用户问题、支持知识检索并实现对话连续性的智能客服系统。添加敏感内容过滤和隐私保护,确保系统输出符合企业和法律要求。智能客服系统在现代企业中起着至关重要的作用。设计用于存储用户信息、对话历史和知识库的数据库模型。支持图像、语音等输入,进一步提升智能客服的应用范围。原创 2025-01-28 10:08:31 · 1164 阅读 · 0 评论 -
构建 Q&A 系统:基于文档和模型的问答
和文档检索技术,我们可以构建一个智能的问答系统,自动从文档库中检索并生成相关答案。通过这种 Q&A 系统,员工可以轻松提出问题,系统会从文档中找到相关信息并生成准确的回答。现代的 Q&A 系统不仅需要能理解用户的问题,还需要能够从大量文档中找到相关的答案。在现代企业中,自动化的问答系统可以极大地提升工作效率,特别是在文档处理、客户支持和知识管理等领域。和文档检索技术,可以轻松构建一个智能的问答系统,帮助用户从文档中快速获取信息。在法律领域,Q&A 系统能够帮助用户快速从合规性文档或合同条款中提取关键信息。原创 2025-01-28 10:05:19 · 1272 阅读 · 0 评论 -
AI 模型评估与质量控制:生成内容的评估与问题防护
我们可以构建一个强大的模型评估与质量控制系统,确保生成内容的准确性、流畅性和合规性。通过结合自动评估、事实验证和反馈机制,我们可以有效应对幻觉问题,提升生成式 AI 应用的可靠性和用户体验。未来,随着生成式 AI 技术的不断发展,结合更多领域知识和优化手段,模型评估与质量控制将成为推动智能应用发展的重要保障。本文将介绍如何评估生成式 AI 模型的输出质量,并采用有效的技术手段,保护应用免受幻觉等问题的影响。在医疗场景中,生成的回答需要经过专业验证,确保内容符合医学标准。模型评估需要量化生成内容的质量。原创 2025-01-27 18:49:03 · 1573 阅读 · 0 评论 -
构建自定义 AI 模型服务:集成到 Spring AI 处理特定任务
Spring AI 提供了强大的扩展能力,可以轻松集成自定义 AI 模型服务。原创 2025-01-27 18:46:00 · 946 阅读 · 0 评论 -
支持生成式 AI:聊天与文档检索的结合
Spring AI 通过支持聊天会话内存和检索增强生成,为构建智能问答系统、文档检索平台和多轮对话系统提供了强大的基础。无论是需要上下文管理的聊天场景,还是需要结合知识库的问答系统,这些功能都能显著提升用户体验和系统性能。聊天会话内存是生成式 AI 在多轮对话中保持上下文的一种机制,它能够记住用户在对话中的输入和生成的响应,并在后续对话中使用这些上下文信息。生成式 AI 已成为现代应用的重要组成部分,从实时聊天到文档检索,再到智能问答系统,其核心是能够理解上下文并生成有用的回答。具体您想了解哪方面?原创 2025-01-25 10:16:14 · 779 阅读 · 0 评论 -
SpringAI 搭建智能体(二):搭建客服系统智能体
一个智能体不仅能够理解用户的需求,还能拆解任务、调用工具完成具体操作,并在复杂场景中高效运行。智能体是一种能够根据目标自主执行任务的系统。传统 AI 通常专注于单一功能(如文本生成、分类任务等),而智能体是一个更高层次的概念,它整合了多个功能模块,能够在复杂场景中完成多步骤任务。通过引入智能体的概念和实践,我们展示了如何构建一个灵活、高效的系统,完成复杂任务。在数据处理场景中,智能体可以调用数据清洗、分析和可视化工具,完成复杂的数据管道任务。的智能体实现,深入探讨智能体的概念、构建流程以及实际应用场景。原创 2025-01-24 11:12:32 · 2601 阅读 · 0 评论 -
SpringAI 搭建智能体(一):让模型执行客户端操作
Spring AI 允许我们将工具注册为 Spring 的 Bean。首先,我们需要定义一个通用的工具接口。原创 2025-01-24 10:44:52 · 976 阅读 · 0 评论 -
PyTorch 模型 浅读
在 PyTorch 中,模型通常是由一个或多个神经网络层构成的计算图,这些层通过参数(权重和偏置)进行连接。PyTorch 提供了强大的计算图和自动求导机制,可以动态构建模型并进行高效的训练和推理。模型定义:继承类并实现forward()方法来定义前向传播。损失函数:用于计算预测值与真实值之间的误差。优化器:通过反向传播来更新模型参数,通常使用梯度下降法。训练和推理:通过多次迭代训练模型并最终应用于推理任务。# 定义简单的神经网络模型。原创 2025-01-23 10:37:06 · 1898 阅读 · 2 评论 -
使用 Spring AI 调用本地 模型实现
本篇博客展示了如何使用 Spring AI 框架集成本地的 PyTorch 模型,并通过 Spring Boot 提供一个 Web 接口来进行预测。我们使用了 TorchScript 格式来将 PyTorch 模型转换为可在 Java 环境中使用的格式,并通过简单的 Spring 配置和控制器使其能够在 Web 应用中提供服务。希望这个示例对你集成和调用本地 PyTorch 模型有所帮助。如果你对 Spring AI 或 PyTorch 的其他集成有疑问,欢迎在评论区留言,我们一起讨论。原创 2025-01-23 10:32:21 · 1159 阅读 · 0 评论 -
跨模型的 API 调用与集成:使用 Spring AI 构建可移植的 API 代码,支持多个 AI 模型(如 OpenAI、Anthropic 等)的调用
Spring AI 是 Spring 生态系统中的一部分,旨在提供一种简单、可扩展的方式来集成人工智能模型。Spring AI 使得开发者可以使用现有的 Spring 体系结构方便地访问多种 AI 模型和服务,例如 OpenAI、Anthropic、HuggingFace 等。原创 2025-01-23 10:27:21 · 1213 阅读 · 0 评论 -
跨模型的 API 调用与集成:如何构建可移植的 API 代码,支持多个 AI 模型(如 OpenAI、Anthropic 等)的调用
在构建多模型集成的系统时,跨模型 API 调用和集成的设计显得尤为重要。通过设计统一的接口和灵活的模型切换机制,我们可以在项目中快速集成和切换不同的 AI 模型,满足多样化的需求。本文介绍了如何构建一个可移植的 API 调用层,并通过实际的应用场景(如智能客服、内容生成、推荐系统等)展示了如何利用这一架构提升项目的灵活性和可扩展性。无论是为了适应不同模型的特点,还是为了能够在业务需求变化时轻松切换模型,设计一个高效的 API 调用层将是开发者提升工作效率的利器。原创 2025-01-23 10:24:44 · 770 阅读 · 0 评论 -
还在使用关键词搜索?SpringAI 实现语义搜索
平台可以通过分析用户观看视频的内容(如通过视频标题、标签、描述生成向量),将这些向量存入向量数据库,并根据用户的观看历史生成用户画像向量。客户的问题可以通过模型转换为向量,与知识库中的问题向量进行匹配,快速提供相关的答案。:社交平台可以通过将用户发布的内容(如帖子、评论等)生成向量,存储到数据库,并基于用户行为、内容的语义相似性,推荐给用户相关的帖子和用户。:通过分析用户在电商平台的行为(如浏览、购买记录),生成用户兴趣向量,广告系统可以根据这些向量为用户推荐相关的广告,并提高广告点击率。原创 2025-01-23 10:17:18 · 895 阅读 · 0 评论 -
SpringAI 之AI 模型输出与 POJO 映射
在使用 AI 模型时,返回的结果通常以 JSON 格式呈现,或者是一组键值对的结构化数据。为了便于在 Java 中进行后续处理与存储,通常需要将这些输出映射到 Java 的。以下将介绍如何将 AI 模型的输出映射到 POJO,并结合具体示例讲解常见的实现步骤。使用 Jackson 将 AI 模型返回的 JSON 数据映射到 POJO。这种方式实现了 AI 输出的结构化处理,并增强了系统的可维护性和可扩展性。根据 AI 模型的输出结构,定义相应的 POJO 类。中的内容映射到一个嵌套 POJO。原创 2025-01-22 10:07:47 · 529 阅读 · 0 评论 -
使用 Spring AI:从文本到图像的实现
文本转语音(Text-to-Speech, TTS)功能可以将文本内容转换为语音,适合用于阅读器、播报系统等场景。这两种功能展示了 Spring AI 如何简化人工智能的集成,为开发者提供高效的开发体验。文本到图像生成模型(如 OpenAI 的 DALL·E 或类似模型)可以根据输入的描述生成相关的图像。Spring AI 提供了集成各种 AI 模型的能力,包括文本生成、图像生成以及语音合成功能。返回的结果是图像的 URL,点击即可查看生成的图像。,用于提供文本转图像的 API 接口。原创 2025-01-22 10:04:17 · 696 阅读 · 0 评论 -
连接 OpenAI 模型:基础操作
通过这些步骤,您可以将 OpenAI 模型集成到 Spring Boot 项目中,使用 Spring AI 和 OpenAI 提供的 API 进行基础的对话。如果您没有找到现成的 Spring AI 依赖,您可以使用 OpenAI 官方提供的 Java SDK,或者自己封装 HTTP 请求与 OpenAI API 交互。在这一部分中,我们将介绍如何连接 OpenAI 模型,设置 API 密钥,并使用 Spring AI 的。确保处理 API 请求过程中可能出现的错误,例如网络问题、API 限制等。原创 2025-01-21 14:07:34 · 2297 阅读 · 0 评论 -
搭建第一个 Spring AI 项目
SpringAI是一个将AI功能和Spring框架的优势结合在一起的开发工具,旨在简化AI系统的集成、管理与部署。通过SpringAI,开发者不仅可以在传统的业务系统中集成AI功能,还能通过其强大的工具支持和灵活的架构设计,快速适应AI技术不断发展的需求。SpringAI提供了丰富的功能,涵盖从AI模型的调用到与数据库的集成等多个方面,帮助开发者构建和管理AI驱动的应用程序。随着人工智能技术的快速发展,AI模型的集成、部署和管理变得愈加复杂。原创 2025-01-20 13:47:23 · 1342 阅读 · 0 评论 -
Spring AI 概述与功能简介
SpringAI是一个将AI功能和Spring框架的优势结合在一起的开发工具,旨在简化AI系统的集成、管理与部署。通过SpringAI,开发者不仅可以在传统的业务系统中集成AI功能,还能通过其强大的工具支持和灵活的架构设计,快速适应AI技术不断发展的需求。SpringAI提供了丰富的功能,涵盖从AI模型的调用到与数据库的集成等多个方面,帮助开发者构建和管理AI驱动的应用程序。随着人工智能技术的快速发展,AI模型的集成、部署和管理变得愈加复杂。原创 2025-01-20 10:09:11 · 984 阅读 · 0 评论 -
Cursor 之影子工作区:在后台迭代代码的实现与探索
随着 AI 技术的快速发展,将 AI 引入开发环境中已经成为提升开发效率的重要方向。然而,AI 编写代码时会引发的一些潜在问题,如覆盖用户正在开发的功能、生成不可编译的代码等,可能会影响用户的正常开发体验。LSP 提供的 lint 信息对 AI 编写代码具有重要意义,可帮助 AI 快速改进生成的代码质量。最简单的方案是将用户工作区复制到临时目录,AI 在临时目录中运行代码。未来,随着运行性能问题的解决,影子工作区将不仅支持代码修改,还能完成更复杂的任务,如完整功能模块的开发与测试。原创 2025-01-09 10:33:57 · 967 阅读 · 0 评论 -
Supermaven 加入 Cursor:AI 编码新篇章
我们欢迎 Jacob 和 Supermaven 团队的加入!Cursor 和 Supermaven 将携手为专业开发者打造全球领先的 AI 编程工具,让开发者能够以更快、更愉悦的方式进行软件开发。未来已来,让我们共同期待更智能的编码新时代!原创 2025-01-07 20:37:14 · 633 阅读 · 0 评论 -
CURSOR 应用:深入理解字符前缀条件算法(Character Prefix Conditioning)
在代码补全中,用户期待智能模型能根据输入快速、准确地给出建议。但现代语言模型基于Token序列运作,这在处理非Token边界输入时会带来偏差。为了解决这一问题,本文将探讨一种高效算法——字符前缀条件算法(Character Prefix Conditioning),用于更精确地进行代码补全采样。字符前缀条件算法提供了一种优雅的解决方案,将字符层级的约束融入到Token采样中。这不仅提升了代码补全的精确度,也为其他字符敏感任务提供了理论参考。如果你对算法的具体实现有想法,欢迎发送邮件至与我们分享!关于作者。原创 2025-01-07 20:34:47 · 931 阅读 · 0 评论