PTA Data Structures and Algorithms (English) 6-17

6-17 Shortest Path [4] (25point(s))

 

Write a program to find the weighted shortest distances from any vertex to a given source vertex in a digraph. If there is more than one minimum path from v to w, a path with the fewest number of edges is chosen. It is guaranteed that all the weights are positive and such a path is unique for any vertex.

Format of functions:

void ShortestDist( MGraph Graph, int dist[], int path[], Vertex S );

where MGraph is defined as the following:

typedef struct GNode *PtrToGNode;
struct GNode{
    int Nv;
    int Ne;
    WeightType G[MaxVertexNum][MaxVertexNum];
};
typedef PtrToGNode MGraph;

The shortest distance from V to the source S is supposed to be stored in dist[V]. If V cannot be reached from S, store -1 instead. If W is the vertex being visited right before V along the shortest path from S to V, then path[V]=W. If V cannot be reached from Spath[V]=-1, and we have path[S]=-1.

Sample program of judge:

#include <stdio.h>
#include <stdlib.h>

typedef enum {false, true} bool;
#define INFINITY 1000000
#define MaxVertexNum 10  /* maximum number of vertices */
typedef int Vertex;      /* vertices are numbered from 0 to MaxVertexNum-1 */
typedef int WeightType;

typedef struct GNode *PtrToGNode;
struct GNode{
    int Nv;
    int Ne;
    WeightType G[MaxVertexNum][MaxVertexNum];
};
typedef PtrToGNode MGraph;

MGraph ReadG(); /* details omitted */

void ShortestDist( MGraph Graph, int dist[], int path[], Vertex S );

int main()
{
    int dist[MaxVertexNum], path[MaxVertexNum];
    Vertex S, V;
    MGraph G = ReadG();

    scanf("%d", &S);
    ShortestDist( G, dist, path, S );

    for ( V=0; V<G->Nv; V++ )
        printf("%d ", dist[V]);
    printf("\n");
    for ( V=0; V<G->Nv; V++ )
        printf("%d ", path[V]);
    printf("\n");

    return 0;
}

/* Your function will be put here */

Sample Input (for the graph shown in the figure):

8 11
0 4 5
0 7 10
1 7 40
3 0 40
3 1 20
3 2 100
3 7 70
4 7 5
6 2 1
7 5 3
7 2 50
3

Sample Output:

40 20 100 0 45 53 -1 50 
3 3 3 -1 0 7 -1 0

Example: 

void ShortestDist( MGraph Graph, int dist[], int path[], Vertex S )
{
    int visited[MaxVertexNum];
    for(int i = 0; i < Graph->Nv; i++) {
        dist[i] = path[i] = -1;
        visited[i] = false;
    }
    dist[S] = 0;
    path[S] = -1;
    for(int h = 0; h < Graph->Nv; h++) {
        int min = -1;
        for(int k = 0; k < Graph->Nv; k++) {
            if(!visited[k] && (dist[k] > -1)) {
                if((min == -1) || (dist[k] < dist[min])) {
                    min = k;
                }
            }
        }
        if(min == -1) return ;
        visited[min] = true;
        for(int i = 0; i < Graph->Nv; i++) {
            if(Graph->G[min][i] < INFINITY)
                if((dist[i] == -1) || (dist[i]>Graph->G[min][i]+dist[min])) {
                    dist[i] = Graph->G[min][i] + dist[min];
                    path[i] = min;
                }
        }
    }
}

思路:

迪杰斯特拉算法,取dist[]中最小的点,排除已访问过的点(visited[]为true), 然后更新到其他点的dist。

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页