[转]python 大文件以行为单位读取方式比对

[转]http://www.cnblogs.com/aicro/p/3371986.html

先前需要做一个使用python读取大文件(大于1G),并逐条存入内存进行处理的工作。做了很多的尝试,最终看到了如下的文章。

http://stackoverflow.com/questions/8009882/how-to-read-large-file-line-by-line-in-python

 

该文章实际上提供了集中读取大文件的方式,先经过测试总结如下

1. for line in fileHandle:

该方式是最快速的。而且python虚拟机在内部帮助我们对buffer进行管理,内存占用量小,且不差错。

 

2. fileinput方式

该方式实际效果较慢,但是也有buffer管理功能

 

3. (自己摸索和尝试的)使用file.read(sizeHint)的方式进行区块读取

该方法是三者中最慢的,而且需要自己去控制内存和选择需要的区域,所以在读到的buffer之后,还需要进行拆分工作,比较麻烦,而且容易出错。最无奈的是,使用下来(我的环境是2.6和2.7),sizeHint作用较小,原来觉得如果sizeHint是1024,则每次在内存中只会驻留1024B的内容,但是实际上不是这样的,在度过一次1024B之后,再次读取1024B的时候,尽管已经对之前的buf进行了del操作,但是该1024B仍然存留于内存中,所以内存越吃越大,最终MemoryError。

 

4. file.readline和file.readlines

和read类似,只适用于小文件。

 

结论:

在使用python进行大文件读取时,应该返璞归真,使用最简单的方式,交给解释器,就管好自己的工作就行了。

 

附,实测数据(这里的数据是我的程序的实际运行情况,在程序中其实读了两个差不多大小的文件,并做了一定逻辑处理,所以绝对值是没有意义的,但是相对比较值很能够说明情况)

1. 大文件(>1.4G)

所使用的方式 size_hint 所使用时间
for i in open(...)  / 103.382492s
fileinput          / 131.525755s
file.read和buffer控制 2亿B 报错:memoryError    

 

2. 小文件(西游记的txt,大约1.4M)

 

所使用的方式 size_hint 所使用时间
for i in open(...)   /  2.11s
fileinput          / 4.22s
file.read和buffer控制 2亿B 4.07s

------------------------------------------------------------------------

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值