ROI感兴趣区域

函数的操作被限于感兴趣区域。


设置或取消ROI对应的函数:cvSetImageROI(IplImage* image, CvRect rect)和cvResetImageROI(IplImage* image)函数。


cvResetImageROI()//函数释放ROI是非常重要的,否则,将忠实的显示ROI区域。


#include "cv.h"
#include "highgui.h"
 
int main()
{
    IplImage* dst = cvLoadImage("D:/Qt/QtTemp/ImageROI/BtyLena.jpg");
 
    cvSetImageROI(dst, cvRect(120, 100, 80, 80));
    cvAddS(dst, cvScalar(100), dst);         //蓝色通道增加100后<<计算数量和数组的和
    /*void cvAddS( const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL );*/
    cvResetImageROI(dst);      //函数释放ROI是非常重要的,否则,将忠实的显示ROI区域
 
    cvNamedWindow("dst");
    cvShowImage("dst", dst);
    cvWaitKey(0);
 
    cvReleaseImage(&dst);
    cvDestroyWindow("dst");
 
    return 0;
}

### 手掌感兴趣区域ROI)提取的方法 在Matlab中进行手掌感兴趣区域ROI)的提取通常涉及预处理、分割以及特定的手掌特征定位。以下是具体实现过程: #### 预处理阶段 为了提高后续操作的效果,首先对手掌图像进行必要的预处理工作。这一步骤主要包括灰度转换和去噪。 ```matlab % 将彩色图像转化为灰度图 grayImage = rgb2gray(originalImage); % 使用高斯滤波器去除噪声 filteredImage = imgaussfilt(grayImage, 2); ``` #### 图像增强与阈值分割 通过对比度拉伸或其他形式的直方图调整来改善图像质量,并采用合适的全局或自适应阈值方法完成初步分割。 ```matlab % 对图像应用局部自适应阈值分割 binaryImage = adapthisteq(filteredImage); % 自动对比度增强 bwImage = imbinarize(binaryImage,'adaptive'); ``` #### 形态学运算优化边界 利用形态学开闭运算消除小斑点并平滑轮廓线条,从而获得更清晰的手掌外形。 ```matlab seDisk = strel('disk',5); % 定义圆形结构元素 cleanedBW = bwmorph(bwImage,'remove'); % 移除孤立像素 filledBW = imfill(cleanedBW,'holes'); % 填充内部孔洞 smoothedBW = imclose(filledBW, seDisk); % 应用闭合操作使边缘更加光滑 finalBW = imopen(smoothedBW, seDisk); % 开启操作进一步细化形状 ``` #### 提取手部轮廓及其最小外接矩形作为ROI 找到最大的连通域代表整个手掌部分,进而求得其包围盒即为目标ROI范围。 ```matlab stats = regionprops(finalBW, 'Area','BoundingBox'); [maxArea,idx] = max([stats.Area]); palmBox = stats(idx).BoundingBox; roiImage = originalImage(round(palmBox(2)):round(palmBox(2)+palmBox(4)), ... round(palmBox(1)):round(palmBox(1)+palmBox(3)), :); imshow(roiImage); title('Extracted Palm ROI'); ``` 上述代码片段展示了如何逐步从原始输入图片中分离出手掌的主要组成部分,并将其限定在一个合理的区域内以便于下一步分析处理[^1][^2].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值