数独
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
4
描述
-
数独是一种运用纸、笔进行演算的逻辑游戏。玩家需要根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个3*3宫内的数字均含1-9,不重复。 每一道合格的数独谜题都有且仅有唯一答案,推理方法也以此为基础,任何无解或多解的题目都是不合格的。
有一天hrdv碰到了一道号称是世界上最难的数独的题目,作为一名合格的程序员,哪能随随便便向困难低头,于是他决定编个程序来解决它。。
输入
-
第一行有一个数n(0< n <100),表示有n组测试数据,每组测试数据是由一个9*9的九宫格构成,0表示对应的格子为空
输出
-
输出一个9*9的九宫格,为这个数独的答案
样例输入
-
1
0 0 5 3 0 0 0 0 0
8 0 0 0 0 0 0 2 0
0 7 0 0 1 0 5 0 0
4 0 0 0 0 5 3 0 0
0 1 0 0 7 0 0 0 6
0 0 3 2 0 0 0 8 0
0 6 0 5 0 0 0 0 9
0 0 4 0 0 0 0 3 0
0 0 0 0 0 9 7 0 0
样例输出
-
1 4 5 3 2 7 6 9 8
8 3 9 6 5 4 1 2 7
6 7 2 9 1 8 5 4 3
4 9 6 1 8 5 3 7 2
2 1 8 4 7 3 9 5 6
7 5 3 2 9 6 4 8 1
3 6 7 5 4 2 8 1 9
9 8 4 7 6 1 2 3 5
5 2 1 8 3 9 7 6 4
思路:
数独
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
4
描述
-
数独是一种运用纸、笔进行演算的逻辑游戏。玩家需要根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个3*3宫内的数字均含1-9,不重复。 每一道合格的数独谜题都有且仅有唯一答案,推理方法也以此为基础,任何无解或多解的题目都是不合格的。
有一天hrdv碰到了一道号称是世界上最难的数独的题目,作为一名合格的程序员,哪能随随便便向困难低头,于是他决定编个程序来解决它。。
输入
-
第一行有一个数n(0< n <100),表示有n组测试数据,每组测试数据是由一个9*9的九宫格构成,0表示对应的格子为空
输出
-
输出一个9*9的九宫格,为这个数独的答案
样例输入
-
1
0 0 5 3 0 0 0 0 0
8 0 0 0 0 0 0 2 0
0 7 0 0 1 0 5 0 0
4 0 0 0 0 5 3 0 0
0 1 0 0 7 0 0 0 6
0 0 3 2 0 0 0 8 0
0 6 0 5 0 0 0 0 9
0 0 4 0 0 0 0 3 0
0 0 0 0 0 9 7 0 0
样例输出
-
1 4 5 3 2 7 6 9 8
8 3 9 6 5 4 1 2 7
6 7 2 9 1 8 5 4 3
4 9 6 1 8 5 3 7 2
2 1 8 4 7 3 9 5 6
7 5 3 2 9 6 4 8 1
3 6 7 5 4 2 8 1 9
9 8 4 7 6 1 2 3 5
5 2 1 8 3 9 7 6 4
思路:
数独
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
4
数独是一种运用纸、笔进行演算的逻辑游戏。玩家需要根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个3*3宫内的数字均含1-9,不重复。 每一道合格的数独谜题都有且仅有唯一答案,推理方法也以此为基础,任何无解或多解的题目都是不合格的。
有一天hrdv碰到了一道号称是世界上最难的数独的题目,作为一名合格的程序员,哪能随随便便向困难低头,于是他决定编个程序来解决它。。
-
输入
- 第一行有一个数n(0< n <100),表示有n组测试数据,每组测试数据是由一个9*9的九宫格构成,0表示对应的格子为空 输出
- 输出一个9*9的九宫格,为这个数独的答案 样例输入
-
1 0 0 5 3 0 0 0 0 0 8 0 0 0 0 0 0 2 0 0 7 0 0 1 0 5 0 0 4 0 0 0 0 5 3 0 0 0 1 0 0 7 0 0 0 6 0 0 3 2 0 0 0 8 0 0 6 0 5 0 0 0 0 9 0 0 4 0 0 0 0 3 0 0 0 0 0 0 9 7 0 0
样例输出
-
1 4 5 3 2 7 6 9 8 8 3 9 6 5 4 1 2 7 6 7 2 9 1 8 5 4 3 4 9 6 1 8 5 3 7 2 2 1 8 4 7 3 9 5 6 7 5 3 2 9 6 4 8 1 3 6 7 5 4 2 8 1 9 9 8 4 7 6 1 2 3 5 5 2 1 8 3 9 7 6 4
思路:
用哈希表标记每个‘0’位置可以填的元素, 然后深搜枚举填数;
需注意每次确定一个数时,都要相关行,列,块的哈希表数据更新;
还有对于标记块(3*3 宫格)时,需要将每一块映射为hash表中的一行,公式是
hashi = x / 3 * 3 + y/ 3, 就是从按照从左往右从上往下的方式为每一块标号的;
代码:
#include <stdio.h>
#include <string.h>
#define N 10
int map[N][N];
bool visx[N][N];
bool visy[N][N];
bool visz[N][N];
int qz(int i, int j) // 求每块对应的标记数组下标
{
return i / 3 * 3 + j / 3;
}
bool dfs(int x, int y)
{
if(y == 9){ // 坐标转换统一在这儿进行
y = 0;
x ++;
if(x == 9) // 到了第9行了,即代表已经找到结果了
return 1;
}
if(map[x][y] != 0) // 如果当前位置不用填数,继续
return dfs(x, y + 1);
bool ok;
for(int k = 1; k <= 9; k ++){
if(visx[x][k] == 0 && visy[y][k] == 0 && visz[qz(x, y)][k] == 0){
visx[x][k] = 1; // 更行标记数组
visy[y][k] = 1;
visz[qz(x, y)][k] = 1;
map[x][y] = k;
ok = dfs(x, y + 1);
if(ok)
return 1;
visx[x][k] = 0; // 判断不成功时,代表之前填数不合适,回溯
visy[y][k] = 0;
visz[qz(x, y)][k] = 0;
map[x][y] = 0; // 别忘了在将本位置值为0
}
}
return 0;
}
int main()
{
int loop, i, j;
scanf("%d", &loop);
while(loop --){
memset(visx, 0, sizeof(visx));
memset(visy, 0, sizeof(visy));
memset(visz, 0, sizeof(visz));
for(i = 0; i < 9; i ++){
for(j = 0; j < 9; j ++){
scanf("%d", &map[i][j]);
if(map[i][j] == 0)
continue;
visx[i][map[i][j]] = 1; // 标记每行/列/块已出现数字
visy[j][map[i][j]] = 1;
visz[qz(i, j)][map[i][j]] = 1;
}
}
dfs(0, 0);
for(i = 0; i < 9; i ++){
for(j = 0; j < 9; j ++){
printf("%d ", map[i][j]);
}
printf("\n");
}
}
return 0;
}