hduoj-1233 还是畅通工程(Prim + Kruskal)

还是畅通工程

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 22226    Accepted Submission(s): 9939


Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
 

Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
 

Output
对每个测试用例,在1行里输出最小的公路总长度。
 

Sample Input
  
  
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
 

Sample Output
  
  
3 5
Hint
Hint
Huge input, scanf is recommended.
 

Prim(邻接矩阵,  134ms):
#include <stdio.h>
#include <string.h>
#define N 100

int n;
int map[N][N], low[N];
bool vis[N];

void Init(){
	memset(vis, 0, sizeof(vis));
	for(int i = 1; i <= n; i ++){
		low[i] = 0xfffffff;
		for(int j = 1; j <= n; j ++){
			map[i][j] = 0xfffffff;
		}
	}
}

int Prim(int choose){
	low[choose] = 0;
	vis[choose] = 1;
	for(int i = 1; i <= n; i ++){
		low[i] = map[choose][i];
	}
	
	int ans = 0;
	for(int j = 1; j < n; j ++){
		int Min = 0xfffffff;
		for(int i = 1; i <= n; i ++){
			if(!vis[i] && Min > low[i]){
				Min = low[i];
				choose = i;
			}
		}
		vis[choose] = 1;
		ans += Min;
		for(int i = 1; i <= n; i ++){
			if(!vis[i] && low[i] > map[choose][i]){
				low[i] = map[choose][i];
			}
		}
	}
	
	return ans;
}

int main()
{
	int start, end, len;
	while(scanf("%d", &n), n){
		Init();
		for(int i = 0; i < n * (n - 1) / 2; i ++){
			scanf("%d%d%d", &start, &end, &len);
			if(map[start][end] > len){
				map[start][end] = map[end][start] = len;
			}
		}
		
		int ans = Prim(1);
		
		printf("%d\n", ans);
	}
	
	return 0;
}


Prim(邻接表,  250ms):
#include <stdio.h>
#include <string.h>
#include <vector>
#define N 100

using namespace std;

struct Node{
	int next;
	int len;
};

int n;
int low[N];
bool vis[N];
vector<Node>q[N];

void Init(){
	memset(vis, 0, sizeof(vis));
	for(int i = 1; i <= n; i ++){
		low[i] = 0xfffffff;
		q[i].clear();
	}
}

int Prim(int choose){
	low[choose] = 0;
	vis[choose] = 1;
	for(int i = 0; i < q[choose].size(); i ++){
		int next = q[choose].at(i).next;
		int len = q[choose].at(i).len;
		low[next] = len;
	}
	
	int ans = 0;
	for(int j = 1; j < n; j ++){
		int Min = 0xfffffff;
		for(int i = 1; i <= n; i ++){
			if(!vis[i] && Min > low[i]){
				Min = low[i];
				choose = i;
			}
		}
		vis[choose] = 1;
		ans += Min;
		for(int i = 0; i < q[choose].size(); i ++){
			int next = q[choose].at(i).next;
			int len = q[choose].at(i).len;
			if(!vis[next] && low[next] > len){
				low[next] = len;
			}
		}
	}
	
	return ans;
}

int main()
{
	Node nw;
	int start, end, len;
	while(scanf("%d", &n), n){
		Init();
		for(int i = 0; i < n * (n - 1) / 2; i ++){
			scanf("%d%d%d", &start, &end, &len);
			nw.next = end;
			nw.len = len;
			q[start].push_back(nw);
			nw.next = start;
			q[end].push_back(nw);
		}
		
		int ans = Prim(1);
		
		printf("%d\n", ans);
	}
	
	return 0;
}


Kruskal(邻接表,  296ms):
#include <stdio.h>
#include <queue>
#define N 110

using namespace std;

struct Node{
	int start;
	int end;
	int len;
	friend bool operator < (const Node& a, const Node& b){
		return a.len > b.len;
	}
};

int n;
priority_queue<Node>q;
int Father[N];

void Init(){
	for(int i = 0; i <= n; i ++){
		Father[i] = i;
	}
}

int GetFather(int cur){
	return Father[cur] == cur ? cur : Father[cur] = GetFather(Father[cur]);
}

bool Join(int start, int end){
	int root1 = GetFather(start);
	int root2 = GetFather(end);
	
	if(root1 == root2){
		return 0;
	}
	else{
		Father[root1] = root2;
		return 1;
	}
}

int Kruskal(){
	int ans = 0;
	while(!q.empty()){
		Node cur = q.top();
		q.pop();
		
		if(Join(cur.start, cur.end)){
			ans += cur.len;
		}
	}
	
	return ans;
}

int main()
{
	Node nw;
	int start, end, len;
	while(scanf("%d", &n), n){
		Init();
		for(int i = 0; i < n * (n - 1) / 2; i ++){
			scanf("%d%d%d", &start, &end, &len);
			nw.start = start;
			nw.end = end;
			nw.len = len;
			q.push(nw);
		}
		
		int ans = Kruskal();
		
		printf("%d\n", ans);
	}
	
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值