Spark-基于scala实现文章特征提取(TF-IDF)

版权声明:本文为博主“等木鱼的猫”原创文章,转载请注明出处 http://blog.csdn.net/u012761191 https://blog.csdn.net/u012761191/article/details/80653470

一.基本原理:

    TF-IDF(term frequency–inverse document frequency):TF表示 词频,IDF表示 反文档频率.TF-IDF主要内容就是:如果一个词语在本篇文章出现的频率(TF)高,并且在其他文章出现少(即反文档频率IDF高),那么就可以认为这个词语是本篇文章的关键词,因为它具有很好的区分和代表能力.

二.SparkML库:

TF:HashingTF 是一个Transformer,在文本处理中,接收词条的集合然后把这些集合转化成固定长度的特征向量。这个算法在哈希的同时会统计各个词条的词频。
IDF:IDF是一个Estimator,在一个数据集上应用它的fit()方法,产生一个IDFModel。 该IDFModel 接收特征向量(由HashingTF产生),然后计算每一个词在文档中出现的频次。IDF会减少那些在语料库中出现频率较高的词的权重。

三.Spark实例:

import java.io.{FileInputStream, FileOutputStream, ObjectInputStream, ObjectOutputStream, _}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.ml.feature._
import org.apache.spark.sql.SQLContext

object tfidftest {
    def main(args: Array[String]): Unit = {

      val masterUrl = "local[2]"
      val appName ="tfidf_test"
      val sparkConf = new SparkConf().setMaster(masterUrl).setAppName(appName)
      @transient val sc = new SparkContext(sparkConf)
      val sqlContext = new SQLContext(sc)

      import sqlContext.implicits._
      val df = sc.parallelize(Seq(
        (0, Array("a", "b", "c","a")),
        (1, Array("c", "b", "b", "c", "a")),
        (2, Array("a", "a", "c","d")),
        (3, Array("c", "a", "b", "a", "a")),
        (4, Array("我", "爱", "旅行", "土耳其", "大理","云南")),
        (5, Array("我", "爱", "学习")),
        (6, Array("胡歌", "优秀","演员", "幽默", "责任感"))
      )).map(x => (x._1, x._2)).toDF("id", "words")

      df.show(false)  //展示数据

      val hashModel = new HashingTF()
        .setInputCol("words")
        .setOutputCol("rawFeatures")
        .setNumFeatures(Math.pow(2, 20).toInt)

      val featurizedData = hashModel.transform(df)

      featurizedData.show(false) //展示数据

      val df3 = sc.parallelize(Seq(
        (0, Array("a", "a", "c","d")),
        (1, Array("c", "a", "b", "a", "a"))
      )).map(x => (x._1, x._2)).toDF("id", "words")

      hashModel.transform(df3).show(false)

      val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")
      val idfModel = idf.fit(featurizedData)

      val rescaledData = idfModel.transform(featurizedData)
      rescaledData.select("words", "features").show(false)

      try {
        val fileOut: FileOutputStream = new FileOutputStream("idf.jserialized")
        val out: ObjectOutputStream = new ObjectOutputStream(fileOut)
        out.writeObject(idfModel)
        out.close()
        fileOut.close()
        System.out.println("\nSerialization Successful... Checkout your specified output file..\n")
      }
      catch {
        case foe: FileNotFoundException => foe.printStackTrace()
        case ioe: IOException => ioe.printStackTrace()
      }

      val fos = new FileOutputStream("model.obj")
      val oos = new ObjectOutputStream(fos)
      oos.writeObject(idfModel)
      oos.close

      val fis = new FileInputStream("model.obj")
      val ois = new ObjectInputStream(fis)
      val newModel = ois.readObject().asInstanceOf[IDFModel]

      val df2 = sc.parallelize(Seq(
        (0, Array("a", "b", "c","a")),
        (1, Array("c", "b", "b", "c", "a")),
        (2, Array("我", "爱", "旅行", "土耳其", "大理","云南")),
        (3, Array("我", "爱", "工作")),
        (4, Array("胡歌", "优秀","演员", "幽默", "责任感"))
      )).map(x => (x._1, x._2)).toDF("id", "words")

      val hashModel2 = new HashingTF()
        .setInputCol("words")
        .setOutputCol("rawFeatures")
        .setNumFeatures(Math.pow(2, 20).toInt)

      val featurizedData2 = hashModel2.transform(df2)


      val rescaledData2 = newModel.transform(featurizedData2)
      rescaledData2.select("words", "features").show(false)


      }


}


阅读更多
换一批

没有更多推荐了,返回首页