大神题解:
http://blog.csdn.net/u014800748/article/details/47680899
The sum of gcd
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 526 Accepted Submission(s): 226
Problem Description
You have an array
A
,the length of
A
is
n
Let f(l,r)=∑ri=l∑rj=igcd(ai,ai+1....aj)
Let f(l,r)=∑ri=l∑rj=igcd(ai,ai+1....aj)
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
First line has one integers n
Second line has n integers Ai
Third line has one integers Q ,the number of questions
Next there are Q lines,each line has two integers l , r
1≤T≤3
1≤n,Q≤104
1≤ai≤109
1≤l<r≤n
First line has one integers n
Second line has n integers Ai
Third line has one integers Q ,the number of questions
Next there are Q lines,each line has two integers l , r
1≤T≤3
1≤n,Q≤104
1≤ai≤109
1≤l<r≤n
Output
For each question,you need to print
f(l,r)
Sample Input
2 5 1 2 3 4 5 3 1 3 2 3 1 4 4 4 2 6 9 3 1 3 2 4 2 3
Sample Output
9 6 16 18 23 10
Author
SXYZ
Source
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
const int maxn=10100;
typedef long long int LL;
struct G
{
G(){}
G(int _id,LL _g):id(_id),g(_g){}
int id;
LL g;
void toString()
{
printf("id: %d g: %lld\n",id,g);
}
};
int n,a[maxn],Q;
vector<G> VL[maxn],VR[maxn];
struct Que
{
int L,R,id;
bool operator<(const Que& que) const
{
if(L!=que.L) return L<que.L;
return R<que.R;
}
}que[maxn];
void PreInit()
{
/// get Left Point
/// 以i为右端点,预处理出左边的段
for(int i=1;i<=n;i++)
{
VL[i].clear();
if(i==1)
{
VL[i].push_back(G(i,a[i]));
}
else
{
LL curg=a[i];int L=i;
for(auto &it : VL[i-1])
{
int g=__gcd(it.g,curg);
if(g!=curg) VL[i].push_back(G(L,curg));
curg=g; L=it.id;
}
VL[i].push_back(G(L,curg));
}
}
/// get Right Point
/// 以i为左端点,预处理出右边的段
for(int i=n;i>=1;i--)
{
VR[i].clear();
if(i==n)
{
VR[i].push_back(G(i,a[i]));
}
else
{
LL curg=a[i];int R=i;
for(auto &it : VR[i+1])
{
int g=__gcd(curg,it.g);
if(g!=curg) VR[i].push_back(G(R,curg));
curg=g; R=it.id;
}
VR[i].push_back(G(R,curg));
}
}
}
/// 计算L,R之间的值
LL calu(int type,int L,int R)
{
LL ret=0;
if(type==0)
{
int tr=R;
for(auto &it : VL[R])
{
if(it.id>=L)
{
ret+=(tr-it.id+1)*it.g;
tr=it.id-1;
}
else
{
ret+=(tr-L+1)*it.g;
break;
}
}
}
else if(type==1)
{
int tr=L;
for(auto &it : VR[L])
{
if(it.id<=R)
{
ret+=(it.id-tr+1)*it.g;
tr=it.id+1;
}
else
{
ret+=(R-tr+1)*it.g;
break;
}
}
}
return ret;
}
LL ans[maxn];
int main()
{
int T_T;
scanf("%d",&T_T);
while(T_T--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",a+i);
PreInit();
scanf("%d",&Q);
for(int i=0,l,r;i<Q;i++)
{
scanf("%d%d",&l,&r);
que[i].L=l; que[i].R=r; que[i].id=i;
}
sort(que,que+Q);
int L=1,R=0; LL ret=0;
for(int i=0;i<Q;i++)
{
while(R<que[i].R)
{
R++;
ret+=calu(0,L,R);
}
while(R>que[i].R)
{
ret-=calu(0,L,R);
R--;
}
while(L<que[i].L)
{
ret-=calu(1,L,R);
L++;
}
while(L>que[i].L)
{
L--;
ret+=calu(1,L,R);
}
ans[que[i].id]=ret;
}
for(int i=0;i<Q;i++)
cout<<ans[i]<<endl;
}
return 0;
}