java 感知哈希算法 判断图片相识度

package com.jk.utils;
import java.awt.Graphics2D;
import java.awt.color.ColorSpace;
import java.awt.image.BufferedImage;
import java.awt.image.ColorConvertOp;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.InputStream;

import javax.imageio.ImageIO;

/**
 * 感知哈希算法 判断图片相识度
 * @author cmlx
 *
 */
public class ImagePHash {
	private int size = 32;
    private int smallerSize = 8;

    public ImagePHash() {
        initCoefficients();
    }

    private ImagePHash(int size, int smallerSize) {
        this.size = size;
        this.smallerSize = smallerSize;

        initCoefficients();
    }

    private int distance(String s1, String s2) {
        int counter = 0;
        for (int k = 0; k < s1.length();k++) {
            if(s1.charAt(k) != s2.charAt(k)) {
                counter++;
            }
        }
        return counter;
    }

    // Returns a ‘binary string‘ (like. 001010111011100010) which is easy to do a hamming distance on.
    private String getHash(InputStream is) throws Exception {
        BufferedImage img = ImageIO.read(is);
		/* 1. Reduce size(缩小尺寸).
		Like Average Hash, pHash starts with a small image.
		However, the image is larger than 8x8; 32x32 is a good size.This is really done to simplify the DCT computation and not because it is needed to reduce the high frequencies.
		*/
        img = resize(img, size, size);
		/* 2. Reduce color(简化色彩).
		The image is reduced to a grayscale just to further simplify the number of computations.
		*/
        img = grayscale(img);

        double[][] vals = new double[size][size];
        for (int x = 0; x < img.getWidth(); x++) {
            for (int y = 0; y < img.getHeight(); y++) {
                vals[x][y] = getBlue(img, x, y);
            }
        }

		/* 3. Compute the DCT(计算DCT).
		The DCT(Discrete Cosine Transform,离散余弦转换) separates the image into a collection of frequencies and scalars. While JPEG uses an 8x8 DCT, this algorithm uses a 32x32 DCT.
		*/
        long start = System.currentTimeMillis();
        double[][] dctVals = applyDCT(vals);
//        System.out.println("DCT_COST_TIME: " + (System.currentTimeMillis() - start));

		/* 4. Reduce the DCT.
		This is the magic step. While the DCT is 32x32, just keep the top-left 8x8. Those represent the lowest frequencies in the picture.
		*/
		/* 5. Compute the average value.
		Like the Average Hash, compute the mean DCT value (using only the 8x8 DCT low-frequency values and excluding the first term since the DC coefficient can be significantly different from the other values and will throw off the average).
		*/
        double total = 0;

        for (int x = 0; x < smallerSize; x++) {
            for (int y = 0; y < smallerSize; y++) {
                total += dctVals[x][y];
            }
        }
        total -= dctVals[0][0];

        double avg = total / (double) ((smallerSize * smallerSize) - 1);

		/* 6. Further reduce the DCT.
		This is the magic step. Set the 64 hash bits to 0 or 1
		depending on whether each of the 64 DCT values is above or below the average value. The result doesn‘t tell us the
		actual low frequencies; it just tells us the very-rough
		relative scale of the frequencies to the mean. The result
		will not vary as long as the overall structure of the image remains the same; this can survive gamma and color histogram adjustments without a problem.
		*/
        String hash = "";

        for (int x = 0; x < smallerSize; x++) {
            for (int y = 0; y < smallerSize; y++) {
                if (x != 0 && y != 0) {
                    hash += (dctVals[x][y] > avg?"1":"0");
                }
            }
        }

        return hash;
    }

    private BufferedImage resize(BufferedImage image, int width,    int height) {
        BufferedImage resizedImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
        Graphics2D g = resizedImage.createGraphics();
        g.drawImage(image, 0, 0, width, height, null);
        g.dispose();
        return resizedImage;
    }

    private ColorConvertOp colorConvert = new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null);

    private BufferedImage grayscale(BufferedImage img) {
        colorConvert.filter(img, img);
        return img;
    }

    private static int getBlue(BufferedImage img, int x, int y) {
        return (img.getRGB(x, y)) & 0xff;
    }

// DCT function stolen from http://stackoverflow.com/questions/4240490/problems-with-dct-and-idct-algorithm-in-java

    private double[] c;
    private void initCoefficients() {
        c = new double[size];

        for (int i=1;i<size;i++) {
            c[i]=1;
        }
        c[0]=1/Math.sqrt(2.0);
    }

    private double[][] applyDCT(double[][] f) {
        int N = size;

        double[][] F = new double[N][N];
        for (int u=0;u<N;u++) {
            for (int v=0;v<N;v++) {
                double sum = 0.0;
                for (int i=0;i<N;i++) {
                    for (int j=0;j<N;j++) {
                        sum+=Math.cos(((2*i+1)/(2.0*N))*u*Math.PI)*Math.cos(((2*j+1)/(2.0*N))*v*Math.PI)*(f[i][j]);
                    }
                }
                sum*=((c[u]*c[v])/4.0);
                F[u][v] = sum;
            }
        }
        return F;
    }

    /**
     *
     * @param img1
     * @param img2
     * @param tv
     * @return boolean
     */
    public boolean imgChk(String img1, String img2, int tv){
        ImagePHash p = new ImagePHash();
        String image1;
        String image2;

        try {
            image1 = p.getHash(new FileInputStream(new File(img1)));
            image2 = p.getHash(new FileInputStream(new File(img2)));
            int dt = p.distance(image1, image2);
            System.out.println("["+img1 + "] : [" + img2 + "] Score is " + dt);
            if (dt <= tv)
                return true;
        } catch (FileNotFoundException e) {
            e.printStackTrace();
        } catch (Exception e) {
            e.printStackTrace();
        }
        return false;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值