1.什么是Word Embedding
Word Embedding:将文本转化成数字。这种转化是非常有必要的,因为许多的机器学习算法不能直接处理文本字符,需要将输入转变成向量或者张量。World Embedding的目的是用更低的空间创建向量表示,这被称之为Word Vectors(词向量)。
从一个文本语料库中构造一个低维的向量表示,保存一个单词的语义相似性。
2.使用向量表示字符有两个特点:
(1)降低了维度——更有效的表示
(2)语义文本相似性——更有表现力的表示
3.Word Vector(词向量)
词向量被用作语义解析,能够从文本中提取词要表达的意思使自然语言模型能够理解。自然语言模型能够预测到文本的含义需要掌握单词的语义相似性。比如跟水果有关的单词,我们想要发现的应该是生长、吃、果汁等这些有关联的词。
生成World Embedding 最著名的方法是word2vec
WordEmbedding是一种将文本转化为低维向量表示的技术,旨在保持语义相似性,降低维度并提高表示效率。词向量,如word2vec,用于自然语言处理,捕捉单词间的语义关系,帮助模型理解文本含义。这种方法使得与水果相关的词汇能关联到诸如生长、食用和果汁等概念。
5400

被折叠的 条评论
为什么被折叠?



