题意分析:求1~100000000内的回文素数
题目分析:
1.多组测试数据,所以先打表。打表O(N), N=10^9, 先求质数再判断回文,还是O(N), 效率低下;所以先构造回文数,再判断质数。
2.偶数位的回文数都能被11整除,自己证明去。所以,偶数位的回文数除了11都是合数。
3.一个k位数,可以构造出一个奇数位的回文数。比如13,可以构造131;189可以构造18981.所以100000000内的只要从1构造到9999即可。
4.若范围为1000000000,那么明显超出int范围,要用long long。
题目分析:
1.多组测试数据,所以先打表。打表O(N), N=10^9, 先求质数再判断回文,还是O(N), 效率低下;所以先构造回文数,再判断质数。
2.偶数位的回文数都能被11整除,自己证明去。所以,偶数位的回文数除了11都是合数。
3.一个k位数,可以构造出一个奇数位的回文数。比如13,可以构造131;189可以构造18981.所以100000000内的只要从1构造到9999即可。
4.若范围为1000000000,那么明显超出int范围,要用long long。
5. 最后按从小到大的顺序输出,优先队列搞定。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <cmath>
#include <vector>
#define MAXN 10000
#define RST(N)memset(N, 0, sizeof(N))
using namespace std;
typedef long long LL;
struct cmp
{
bool operator()(const int &a, const int &b)
{
return a > b;
}
};
priority_queue <int, vector<int>, cmp> pq;
bool is_prime(int x)
{
for(int i=2; i<sqrt(x+0.5); i++) {
if(x % i == 0) return false;
}
return true;
}
int main()
{
//freopen("data.in", "r", stdin);
//freopen("data.out", "w", stdout);
while(!pq.empty()) pq.pop();
pq.push(11);
int sum, tmp;
for(int i=2; i<MAXN; i++) {
for(sum=i, tmp=i/10; tmp!=0; tmp/=10) {
sum = sum*10 + tmp%10;
}
if(is_prime(sum)) pq.push(sum);
}
while(!pq.empty()) {
cout << pq.top() << endl;
pq.pop();
}
return 0;
}