一亿以内的回文素数

题意分析:求1~100000000内的回文素数
题目分析:
1.多组测试数据,所以先打表。打表O(N), N=10^9, 先求质数再判断回文,还是O(N), 效率低下;所以先构造回文数,再判断质数。
2.偶数位的回文数都能被11整除,自己证明去。所以,偶数位的回文数除了11都是合数。
3.一个k位数,可以构造出一个奇数位的回文数。比如13,可以构造131;189可以构造18981.所以100000000内的只要从1构造到9999即可。
4.若范围为1000000000,那么明显超出int范围,要用long long。

5. 最后按从小到大的顺序输出,优先队列搞定。


代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <cmath>
#include <vector>
#define MAXN 10000
#define RST(N)memset(N, 0, sizeof(N))
using namespace std;

typedef long long LL;

struct cmp
{
    bool operator()(const int &a, const int &b)
    {
        return a > b;
    }
};

priority_queue <int, vector<int>, cmp> pq;

bool is_prime(int x)
{
    for(int i=2; i<sqrt(x+0.5); i++) {
        if(x % i == 0) return false;
    }
    return true;
}

int main()
{
    //freopen("data.in", "r", stdin);
    //freopen("data.out", "w", stdout);
    while(!pq.empty()) pq.pop();
    pq.push(11);
    int sum, tmp;
    for(int i=2; i<MAXN; i++) {
        for(sum=i, tmp=i/10; tmp!=0; tmp/=10) {
            sum = sum*10 + tmp%10;
        }
        if(is_prime(sum)) pq.push(sum);
    }
    while(!pq.empty()) {
        cout << pq.top() << endl;
        pq.pop();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值