《Proactive Human-Machine Conversation with Explicit Conversation Goals》

论文提出了一种基于知识图谱的对话系统,旨在主导对话并将其从一个主题引导到另一个。数据集DuConv包含了3w个多轮对话,涉及电影、导演和演员。论文还介绍了检索和生成两种模型,用于对话生成和候选句子的排名。
摘要由CSDN通过智能技术生成
论文出处:ACL 2019
1. 摘要

论文提出了一种基于知识图谱能主导对话的对话系统,并开源了对应的数据集DuConv。该数据集涉及电影、导演和演员相关题材,包含3w个多轮对话,约27w个句子。每个对话包含一个目标三元组[START, TOPIC_A, TOPIC_B],表示系统的目标是将对话主题从A引导到B;另外包括一系列跟TOPIC_A或者TOPIC_B有关的知识三元组,形式为(主体,谓词,客体),表示主客体之间的关系,比如(张艺谋,导演,红高粱);然后包括多轮对话。数据示例如下(文末附json格式的示例):
在这里插入图片描述

2. 模型

论文提出了基于检索和生成的两种模型。

2.1 检索模型

检索模型的整体思路是对每个对话先筛选出n个候选句子,然后使用模型对这n个候选句子打分,选出得分最高最高的句子,作为最终的目标句子。因此分两个主要步骤,一个是筛选得到候选句子

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>