yoloV5 使用——训练速度慢,加速训练

本文介绍了如何在conda虚拟环境中安装YOLOv5,并着重解决了因CUDA版本与PyTorch版本不匹配导致的GPU不可用问题。建议使用conda创建隔离环境,然后按照官方指南下载源码和安装依赖。当遇到GPU不可用时,可以通过升级CUDA或安装匹配CUDA版本的PyTorch来解决。此外,还提供了使用GPU训练YOLOv5的命令参考。
摘要由CSDN通过智能技术生成
    首先大家会按照官方的readme文件进行安装,连接: https://github.com/ultralytics/yolov5
    此时有两点需要注意:
    1、强烈建议大家使用conda虚拟环境安装,这样不会扰乱其他项目的Python环境,关于conda虚拟环境的使用,建议参考我的另一篇博客:
    举例如下:
conda create --name yolov5 python=3.8
conda activate yolov5 # linux下

    2、进入conda环境后,按照官方的程序下载源码和安装依赖

$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt

    3、需要测试torch是否可用,以及是否是GPU
$ Python

import torch
torch.__version__ # 打印torch版本
torch.cuda.is_available() # 查看GPU是否可用    


    4、如果GPU不可用,显示如下:
    
    这种情况就是你的cuda版本过低导致的pytorch版本不匹配,原因就是requirements.sh里面关于pytorch的安装版本的描述,会指向几乎最新的版本,而你的cuda版本低就会安装CPU版本。
    
    如何解决:
    第一种,升级你的cuda版本,然后重新安装(pip install -r requerments.txt)。这种不太建议,因为,很多情况你和别人共享机器,即使不是共享机器也会影响你的其他conda环境。
    第二种,安装支持你cuda版本的YOLOV5支持的版本,比如cuda 10.1 满足YOLOv5的版本为pytorch 1.7.1,这时要注意,使用pip安装,切勿使用conda安装,否则依然找不到。具体操作如下:
    1)卸载现有torch
pip uninstall torch
pip uninstall torchvision

    
    2)查找对应pip 版本: https://pytorch.org/get-started/previous-versions/ ,选择自己的操作系统和cuda对应的pip安装服务,如下:
    
    3)再次测试,应该就可用了。
$ Python

import torch
torch.__version__ # 打印torch版本
torch.cuda.is_available() # 查看GPU是否可用  

    5、使用GPU训练,参考这个网页进行训练: https://github.com/ultralytics/yolov5/issues/475,而不是主页上的,主页上的会仅仅使用CPU训练。当使用单机多卡时,一定要使用最新的

 DistributedDataParallel而不要再使用老旧的DataParallel方式。

        
    如果加上训练epoch,如下:
python -m torch.distributed.launch --nproc_per_node 4 train.py --epochs 100 --batch 128 --data ./data/contraband_rmrb.yaml --weights ./yolov5l.pt --device 0,1,2,3

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TigerZ*

你点滴支持,我持续创作,羞羞

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值