一、概述
1、是什么
moe-Llava 是Llava1.5 的改进 全称《MoE-LLaVA: Mixture of Experts for Large Vision-Language Models》,是一个多模态视觉-文本大语言模型,可以完成:图像描述、视觉问答,潜在可以完成单个目标的视觉定位、名画名人等识别(问答、描述),未知是否能偶根据图片写代码(HTML、JS、CSS)。支持单幅图片输入(可以作为第一个或第二个输入),多轮文本对话。
整体基于Llava1.5,包括训练数据,主要变化在于LLM换为了更小的几个版本,并且LLM增加了moe模块,进行了三阶段训练(前两个阶段和llava1.5相同,第三阶段训练moe层)。具体结构包含:基于CLIP的视觉编码器,以及多个小语言解码器(添加moe层),使用最简单的两层FC构成MLP映射视觉特征到文本长度。
2、亮点
论文中作者的总结贡献分为三点:
*探索了 MoE-tuning,这是一种新的三阶段训练策略&#x
MoE-LLaVA是基于CLIP的视觉编码器与多语言解码器(含Moe模块)的模型,旨在改进Llava1.5。它通过三阶段训练策略,探索了MoE在大型视觉语言模型中的应用。模型在多个视觉理解数据集上展现出优秀性能,尽管大LLM可能导致效果下降。论文强调了MoE在扩展参数量的同时保持计算成本,以及其在幻觉抑制方面的潜力。
订阅专栏 解锁全文
627

被折叠的 条评论
为什么被折叠?



