大模型知识点汇总——模型基础知识

37 篇文章 17 订阅 ¥89.90 ¥99.00
这篇博客汇总了大模型的基础知识,包括主流架构、训练流程、tokenizer和embedding等核心概念,深入探讨了模型幻觉、位置编码、多模态大模型以及微调策略等内容,还涵盖了Post Norm与Pre Norm的区别、强化学习的应用以及量化技术等重要主题。
摘要由CSDN通过智能技术生成

1、主流架构

    目前LLM(Large Language Model)主流结构包括三种范式,分别为Encoder-Decoder、Causal Decoder、Prefix Decode。对应的网络整体结构和Attention掩码如下图。

各自特点、优缺点如下:
1)Encoder-Decoder
结构特点:输入双向注意力,输出单向注意力。
代表模型:T5、Flan-T5、BART。
适用任务:在偏理解的 NLP 任务上效果好。
优点:在输入上采用双向注意力࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TigerZ*

你点滴支持,我持续创作,羞羞

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值