SparkSQL基础

sparksql 专栏收录该内容
3 篇文章 0 订阅

一.sparkSQL发展历程及定义

1.发展历程
    Hive——>shark(Hive on Spark)-->SparkSQL
2.官方定义
     (1)处理结果化数据的spark模块
           什么是结果化数据???
              包含列名 + 列值 + 列类型的数据
     (2)提供了一个分布式数据处理抽象:DataFrame
     (3)提供一个分布式sql引擎
3.开发愿景
    写更少的代码
    读更少的数据
    做最大的优化

二.sparkSQL和shark的区别

shark:
    完全依赖hive和spark:
           依赖hive的hql解析模块
           依赖hihve的元数据管理
           依赖spark的rdd的操作
    问题:
           shark的版本迭代依赖hive和spark的版本迭代
           shark的后期的代码维护和优化比较困难

sparkSQL:

    catalyst:hql解析模块
         先产生逻辑计划,然后再产生物理计划
    SparkSQL1.x:对于访问hive中的数据,需要依赖hive的metastore服务
    SparkSQL2.x:完全不需要依赖hive的metastore服务
    DataFrame是SparkSQL中的主要抽象,是一个核心

三.SparkSQL和hive的区别

 1.和Hive的比较
    支持UDF、UDAF的创建
    是一个库,而不是一个框架
    元数据管理可选
    支持两种方式获取数据:
      HQL/SQL
      DSL(Domain Specific Language)
    提供了Hive Thrift Server(基于hiveserver2服务)
    提交JDBC/ODBC连接
2.已有的BI报表可以通过spark提供的jdbc接口获取spark中的数据
3.可以支持多种语言

四.Spark和Hive的集成

1.要求Spark的编译支持hive:
     -Phive -Phive-thriftserver

2.配置相关参数
    cd /opt/cdh-5.3.6/spark/conf
    创建hive-site.xml的软连接
       ln -s /opt/cdh-5.3.6/hive/conf/hive-site.xml
    或者将hive-site.xml复制到spark的conf文件夹中

3.根据hive的配置参数不同,采用不同的步骤:
    参数是:hive.metastore.uris
        (1)给定该参数的值
           启动hive的metastore服务
             cd /opt/cdh-5.3.6/hive/
             bin/hive --service metastore &
             ## 看到Starting Hive Metastore Server,表示成功
        (2)如果没有给定该参数的中,默认情况
           在hive-site.xml中必须给定元数据管理库的driver、url、username和pasword,将对应数据库的驱动添加到spark的classpath中

4.直接运行spark/bin/spark-sql的即可
    bin/spark-sql ## hive中能够执行的hql语句在这里都可以执行

5.运行bin/spark-shell
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值