U-Net

10人阅读 评论(0) 收藏 举报
分类:

论文原文: U-Net: Convolutional Networks for Biomedical Image Segmentatio

U-Net整体继承自FCN。在FCN原来的基础上经过了一些改进,使之更适合处理医学图像。

1. 网络结构

这里写图片描述
基本的网络结构与FCN差不多。左边是contracting path,右边是expanding path。刚开始原始图像的大小为:512×512,作者做了一个mirror的边缘扩充,扩充到了572×572,如下:
这里写图片描述
网络的详细结果图如下:
这里写图片描述

由于刚开始做了一个镜像补充边缘信息,因此后面做concat的时候,前后的feature map的大小不一样,因此需要对称crop, 此操作与FCN类似。

contracting path是典型的卷积网络架构。它的架构是一种重复结构,每次重复中都有2个卷积层和一个pooling层,卷积层中卷积核大小均为3*3,激活函数使用ReLU,两个卷积层之后是一个2*2的步长为2的max pooling层。每一次下采样后我们都把特征通道的数量加倍。contracting
path中的每一步都首先使用反卷积(up-convolution),每次使用反卷积都将特征通道数量减半,特征图大小加倍。反卷积过后,将反卷积的结果与contracting path中对应步骤的特征图拼接起来。contracting path中的特征图尺寸稍大,将其修剪过后进行拼接。对拼接后的map进行2次3*3的卷积。

最后一层的卷积核大小为1×1,将64通道的特征图转化为特定深度(分类数量,二分类为2)的结果。网络总共23层。

2. 权重矩阵

为了使某些像素点更加重要,在公式中引入w(x)。我们对每一张标注图像预计算了一个权重图,来补偿训练集中每类像素的不同频率,使网络更注重学习相互接触的细胞之间的小的分割边界。即针对分割过程中两个不同的结构”粘”在一起的情况,本文的解决方案是在Loss函数中把”粘”在一起处的背景部分的权重加大。使用形态学操作计算分割边界。权重图计算公式如下:

w(x)=wc(x)+w0exp((d1(x)+d2(x))22σ2)

wc是用于平衡类别频率的权重图,d1代表到最近细胞的边界的距离,d2代表到第二近的细胞的边界的距离。基于经验我们设定w0=10σ5像素。
网络中权重的初始化:我们的网络的权重由高斯分布初始化,分布的标准差为(N/2)0.5,N为每个神经元的输入节点数量。例如,对于一个上一层是64通道的33卷积核来说,N=964

3. 输入处理

分割图(segmentation map)包含这样一些像素点,这些像素点的完整上下文都出现在输入图像中。为了预测图像边界区域的像素点,我们采用镜像图像的方式补全缺失的环境像素。这个tiling方法在使用网络分割大图像时是非常有用的,因为如果不这么做,GPU显存会限制图像分辨率。

本文亮点:

  • 引入了带权重的损失。
  • 为了更好地预测边界点,初始时做了镜像边界扩充。
查看评论

U-Net论文详解

U-Net:生物医学图像分割的卷积神经网络 U-net 是基于FCN的一个语义分割网络,适合用来做医学图像的分割。 摘要 有许多成功利用大量带标注训练数据的神经网络。在这篇论文里,我们提出一个网...
  • jianyuchen23
  • jianyuchen23
  • 2018-02-22 22:54:15
  • 284

U-net翻译

原文名:U-Net: Convolutional Networks for Biomedical Image Segmentation (此网络用于分割细胞图像) 简介 成功训练一个...
  • natsuka
  • natsuka
  • 2017-11-17 20:55:02
  • 2676

深度学习(四)

一、提纲     AlexNet:现代神经网络起源     VGG:AlexNet增强版     GoogleNet:多维度识别     ResNet:机器超越人类识别     Deep...
  • a294271433
  • a294271433
  • 2017-03-20 22:01:38
  • 1402

U-net使用, 图像分割(边缘检测)

U-Net: Convolutional Networks for Biomedical Image Segmentation     通过阅读这篇论文了解到在医学图像领域还是有这样一个网络存在, 它...
  • qq_18293213
  • qq_18293213
  • 2017-05-17 20:29:15
  • 21344

U-net 图像分割

U-Net: Convolutional Networks for Biomedical Image Segmentation     通过阅读这篇论文了解到在医学图像领域还是有这样一个网络存在...
  • gqixf
  • gqixf
  • 2017-09-13 11:23:01
  • 989

深度学习---之U-net应用于生物医学的图像分割

我是从word文档复制过来的,复制过来格式有点乱,仔细看还是能够看明白的U-Net:Convolutional Networks for Biomedica Image Segmentation一、背...
  • zxyhhjs2017
  • zxyhhjs2017
  • 2017-11-28 21:17:56
  • 1353

【深度学习论文】:U-Net

U-Net在深度学习应用到计算机视觉领域之前,人们使用 TextonForest 和 随机森林分类器进行语义分割。卷积神经网络(CNN)不仅对图像识别有所帮助,也对语义分割领域的发展起到巨大的促进作用...
  • hduxiejun
  • hduxiejun
  • 2017-05-03 10:04:39
  • 16031

U-Net及使用keras搭建U-Net分割网络

U-Net: Convolutional Networks for Biomedical Image Segmentation https://arxiv.org/abs/1505.04597 ...
  • m0_37477175
  • m0_37477175
  • 2018-01-22 10:46:48
  • 605

[论文阅读笔记]U-Net: Convolutional Networks for Biomedical Image Segmentation

摘要   大意是说 ,普遍认为深度网络需要大量已标签数据集,这个网络(U-Net)可以依靠数据增强来事先少量数据集训练网络。而且,这个网络训练得很快,运用GPU运行,512*512的图片只需要不用...
  • qq_19784349
  • qq_19784349
  • 2017-11-22 20:54:40
  • 451

U-Net: Convolutional Networks for Biomedical Image Segmentation

1.下降部分conv+maxpool,上升部分conv_transpose+conv,浅色大箭头表示把两个feature map连起来 2.输入图片会比输出图片略大(因为没有padding和repe...
  • meanme
  • meanme
  • 2016-03-20 22:00:36
  • 5688
    个人资料
    持之以恒
    等级:
    访问量: 3万+
    积分: 1035
    排名: 4万+
    最新评论