全文名称《Progressive Color Transfer with Dense Sematic Correspondence》。

文章很简单,就是普通的色彩迁移。不同于以往的风格迁移,本文注重于色彩的迁移。具体区别为:风格迁移不仅改变了图像色彩,原有的内容结构也出现了改变,如CycleGAN,下图把男人变成女人,也可以把女人变成男人。

而色彩迁移的不同之处在于,男人依旧是男人,只是肤色变了、发色变了。
那以往的色彩迁移存在什么问题呢?主要还是不够智能,比如基于统计学的色彩迁移只是把参考图的色彩均值、方差带到目标片中,但颜色的合理性不能保证,可能出现人脸变成绿色、红色的情况。其次是迁移后,图像出现了失真,存在噪点、平滑性消失、内容破坏等情况。
本文作者主要用神经网络提取特征,然后进行影像分类,建立色彩迁移方程,求优,最后得到结果。

如上图所示,原始片和参考片首先通过VGG19网络,提取特征。然后,使用NNF对特征进行匹配(

本文探讨了一种利用神经网络进行色彩迁移的方法,旨在保持内容结构不变,仅改变图像色彩。通过VGG19提取特征并使用NNF进行匹配,确保色彩合理迁移,避免传统方法中可能出现的不合理色彩和图像失真问题。文中提出的线性色彩迁移模型结合损失函数优化,实现了平滑且和谐的色彩变化。然而,模型在特征提取、匹配准确性和平滑约束等方面仍有改进空间。
最低0.47元/天 解锁文章
2138

被折叠的 条评论
为什么被折叠?



