Sundrops的专栏

deep learning

mask rcnn解读

上一篇中介绍faster rcnn,这次mask 基本在上次的基础上加了点代码,参考和引用1. mask rcnn slides 2. kaiming he maskrcnn 3. Ardian Umam mask rcnn,欢迎fork简版mask rcnn。

2017-11-21 00:08:52

阅读数:7825

评论数:2

faster rcnn源码解析

之前一直是使用faster rcnn对其中的代码并不是很了解,这次刚好复现mask rcnn就仔细阅读了faster rcnn,主要参考代码是pytorch-faster-rcnn ,部分参考和借用了以下博客的图片 [1] CNN目标检测(一):Faster RCNN详解 姊...

2017-11-20 23:50:01

阅读数:18508

评论数:9

Deformable ConvNets v2: More Deformable, Better Results

之前介绍过dai老师的DCN v1Deformable Convolutional Networks解读,现在出了V2效果更赞,实验分析也很充分。 分析DCN Effective receptive fields 视野域中每个点对响应的不同,有效视野域即为输入扰动后对输出的影响程度。比如求...

2018-12-11 13:56:32

阅读数:27

评论数:0

Resnet实现细节记录

Resnet # 注意BasicBlock和Bottleneck def resnet18(pretrained=False, **kwargs): model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) return model de...

2018-12-10 16:25:43

阅读数:14

评论数:0

Revisiting RCNN: On Awakening the Classification Power of Faster RCNN

之前听过该文作者Yunchao Wei给的一个talk,当时仔细思考这篇论文,只是感觉加了参数肯定会变好呀,但是实际上该文在探索检测任务中分类和定位的关系。实际上,检测任务中有很多值得探讨的东西,比如之前博客讲过的一篇论文在探究训练和测试尺寸一致的问题,这些点看似都很小,但是我之前一直都是猜测...

2018-12-06 11:52:35

阅读数:28

评论数:0

End-to-End Learning of Motion Representation for Video Understanding

本文TVNet(Total Variable)是在TV-L1的基础上,改变一些操作变成可以训练且速度提高。

2018-11-25 14:33:19

阅读数:32

评论数:0

Graph RCNN解读

这个十月一堆事,心情也比较烦闷,就一直没有动笔写blog,之前一直在做scene graph的生成,然后最近恰好看到graph-rcnn这篇很不错的文章,就解读做个记录 Framework 以往做scene graph generation,基本都是在faster rcnn基础上检测出图片的物...

2018-10-24 16:29:57

阅读数:121

评论数:0

Scene Graph Generation by Iterative Message Passing解读

lifeifei老师团队在发布了Visual Genome数据集后,又在Scene Graph Generation做的新的创新 关于Scene Graph Generation就不再赘述,在上一篇neural motif介绍过,neural motif比这篇晚一些,效果也好一些 Im...

2018-07-09 20:57:47

阅读数:1806

评论数:0

Neural Motifs: Scene Graph Parsing with Global Contex解读

计算机视觉一步步发展,从最初的分类、检测、分割来到了更深层的理解: Scene Graph Generation(场景图生成),即开始预测场景中物体之间的关系 Scene Graph简介 原有的检测box或者实例分割的mask不能充分地表达出图片的语义,因为两个相同的box...

2018-07-05 22:37:18

阅读数:1751

评论数:5

SNIPER: Efficient Multi-Scale Training解读

它算是An Analysis of Scale Invariance in Object Detection-SNIP的增强版,依然在思考怎么能更好的解决检测中的多尺度问题 Introduction RCNN本身具有很好的尺度不变形,因为它先从图片中提取proposal,然后都re...

2018-07-04 00:10:29

阅读数:3301

评论数:0

An Analysis of Scale Invariance in Object Detection – SNIP解读

今天无意中看到这篇好文,在网上搜索时发现Naiyan Wang也在知乎上推荐了,还中了CVPR2018的oral,佩服! Introduction 这篇文章首先想探讨一个问题:scale变化对识别和检测的影响,然后就是upsample对于小物体的检测有用嘛?根据这两个问题的分析,本文提...

2018-07-03 17:27:03

阅读数:2067

评论数:0

Focal Loss for Dense Object Detection解读

还是Tsung-Yi Lin Piotr Dollar kaiming ross他们在Detection领域做的贡献Focal Loss for Dense Object Detection Motivation single stage的检测方法如YOLO、SSD等简单高效,但是精度...

2018-06-24 17:29:54

阅读数:1562

评论数:0

Learning to Segment Every Thing解读

kaiming ross他们一块的又一篇文章,基于mask rcnn的做的一个扩展,他们真是一直在推进着Detection Segmentation领域的发展 Introduction 目前做instance segmentation的方法都需要像素级标注,这样的话就很难有一个类别数目...

2018-06-21 19:14:53

阅读数:1583

评论数:0

Generative Models(生成模型)简介

著名物理学家费曼说过: What I cannot create, I do not understand. 所以我们要真正做到了解图像影音等,就必须要能创造它们。 Pixel RNN 收集一大堆图片,然后利用这些图片开始训练这个图片生成模型,根据前面的像素预测接下来的像素,训练结...

2018-04-30 23:08:37

阅读数:1756

评论数:0

Video Caption Tutorial

欢迎star fork: video-caption.pytorch或者video-caption.pytorch 任务介绍 和image caption一样,不过是将图片换成了一段视频,根据视频内容给出一句文字描述。可用于后续的视频检索或者摘要生成,帮助智能体或者有视觉障碍的人理...

2018-04-26 00:26:45

阅读数:3721

评论数:0

光流在视频检测和分割的再应用

之前介绍了光流提升视频识别的速度和精度的文章,这次还是光流在视频检测和分割的应用,不过做的更完善了 Towards High Performance Video Object Detection 如图所示,较上一篇博客中的两篇文章主要有3个地方改进(详细请看该论文中的Ablatio...

2018-04-25 21:45:14

阅读数:2571

评论数:0

利用光流提升视频识别的速度和精度

daijifeng老师的两篇文章,利用光流提升视频识别的速度Deep Feature Flow for Video Recognition,利用光流提高视频的精度Flow-Guided Feature Aggregation for Video Object Detection,关于光流可参...

2018-04-03 11:59:39

阅读数:3366

评论数:0

RNN, LSTM, GRU, SRU, Multi-Dimensional LSTM, Grid LSTM, Graph LSTM系列解读

RNN/Stacked RNN rnn一般根据输入和输出的数目分为5种 1. 一对一 最简单的rnn 2. 一对多 Image Captioning(image -> sequence of words) 3. 多对一 Sentiment Classif...

2018-03-13 16:04:38

阅读数:2999

评论数:2

Relation Networks for Object Detection解读

现在做detection的竞争相当激烈,能记住的就是ross kaiming团队和sunjian老师团队,还有今天的主角daijifeng老师团队了arxiv link Motivation 众所周知,如果能model出物体之间的关系,那么对物体识别是大有裨益的。可是在深度学习领域...

2018-03-09 15:06:38

阅读数:2519

评论数:0

Path Aggregation Network for Instance Segmentation解读

本篇论文是COCO 2017 instance segmentation的冠军,读了这篇论文再加上之前读论文的体会,和朱神交流后得到一个感悟: 同样一个work的小改动,你不能挖的深或者看得很浅,那你就是trick,而别人就能给科研界带来启发,ResNet很简单,但是kaiming他们就能把...

2018-03-08 16:32:38

阅读数:4790

评论数:3

提示
确定要删除当前文章?
取消 删除
关闭
关闭