Sundrops的专栏

deep learning

faster rcnn源码解析

之前一直是使用faster rcnn对其中的代码并不是很了解,这次刚好复现mask rcnn就仔细阅读了faster rcnn,主要参考代码是pytorch-faster-rcnn ,部分参考和借用了以下博客的图片 [1] CNN目标检测(一):Faster RCNN详解 姊...

2017-11-20 23:50:01

阅读数:16366

评论数:9

Softmax与SoftmaxWithLoss原理及代码详解

一直对softmax的反向传播的caffe代码看不懂,最近在朱神的数学理论支撑下给我详解了它的数学公式,才豁然开朗 SoftmaxWithLoss的由来 SoftmaxWithLoss也被称为交叉熵loss。 回忆一下交叉熵的公式,H(p,q)=−∑jpjlogqjH(p,q)=...

2017-07-29 20:07:54

阅读数:3671

评论数:0

caffe实现多label输入(修改源码版)

在我的上一篇博客中caffe实现多标签输入中,介绍了用把图像和label分来,各自做成lmdb,最后把label的lmdb用slice层分开,这篇博客介绍另一种修改源码的方法实现多label,比其他博客改动源码最少 简介 我们都知道ImageDataLayer是直接读取原图进行分类...

2017-01-19 11:43:12

阅读数:7265

评论数:54

caffe利用训练好的模型进行实际测试

前面的博客介绍了如何生成多label的训练数据,也介绍了测试时对图片处理需要注意的点,这篇博客就来介绍如何利用训练好的模型进行实际测试 官方版demo import numpy as np import os import sys import cv2 caffe_root = '...

2017-01-11 22:01:39

阅读数:6001

评论数:0

OpenCV、Skimage、PIL图像处理的细节差异

上一篇博客中介绍了caffe实现多label输入,其中有一些图片处理的操作(训练验证数据),当时我选择了PIL库,但是在测试中用了caffe官网demo的代码,它使用了caffe提供的一些python接口,而它调用的是skimage这个库,所以有些许差异,可能会带来精度上的一些影响。这篇博客...

2017-01-11 20:28:38

阅读数:22251

评论数:6

caffe实现多标签输入(multilabel、multitask)

caffe里自带的convert_imageset.cpp直接生成一个data和label都集成在Datum的lmdb(Datum数据结构见最 后),只能集成一个label。而我们平时遇到的分类问题可能会有多个label比如颜色,种类等。 目前网上有多种解决方法: 1. 修改caffe代码...

2016-11-09 12:00:47

阅读数:13245

评论数:73

提示
确定要删除当前文章?
取消 删除
关闭
关闭