int8量化和tvm实现

2 篇文章 0 订阅
1 篇文章 0 订阅

量化主要有两种方案

  • 直接训练量化模型如Deepcompression,Binary-Net,Tenary-Net,Dorefa-Net
  • 对训练好的float模型(以float32为例)直接进行量化(以int8为例),这边博客主要讲这个
    参考NIVIDIA 量化官方文档

int8量化原理

将已有的float32型的数据改成A = scale_A * QA + bias_A,B类似,NVIDIA实验证明可以去掉bias,即A = scale_A * QA
也即是QA(量化后的A) = A / scale_A
在这里插入图片描述
有了对应公式A = scale_A * QA,则可以将float32的数据映射到int8,但是由于float32的数据动态范围比int8要大很多,如果数据分布不均匀,极限情况比如如果float32的原始数据都在127的周围,最后量化后都是127了,精度损失严重,而int8其他的数值完全没有用到,没有完全利用int8的数值范围,所以直接最大最小映射不是一个最优方案。
在这里插入图片描述
那能不能找到一个threshold,丢掉一部分float32数值,然后能够更加均匀地映射,从而充分地利用到int8的数值范围
在这里插入图片描述

Softmax原理讲解中提到
交叉熵= 熵 + KL散度(相对熵)
1)信息熵:编码方案完美时,最短平均编码长度的是多少。
2)交叉熵:用次优编码方式时平均编码长度是多少,即需要多少个bits来表示
平均编码长度 = 最短平均编码长度 + 一个增量
3)相对熵:编码方案不一定完美时,平均编码长度相对于最小值的增加值。(即上面那个增量)
int8编码时所需编码长度 = float32编码时所需编码长度 + int8多需要的编码长度
因此相对熵就是int8float32(次优编码)比float32(最优编码)多出来的编码长度越小越好,所以需要找到一个合适的threshold,使得两者之间的相对熵最小即KL散度
这个KL距离代表了损失的信息
在这里插入图片描述

如何寻找一个合适的threshold呢,需要一个校准集合 Calibration Dataset,在校准数据集上运行FP32推理。收集激活的直方图,并生成一组具有不同阈值的8位表示法,并选择具有最少kl散度的表示;kl-散度是在参考分布(即FP32激活)和量化分布之间(即8位量化激活)之间。
在这里插入图片描述

TVM实现int8量化

# 从前端load模型,mxnet、onnx等
sym, _ = relay.frontend.from_mxnet(sym, {'data': data_shape})
# 随机生成test的模型参数,如果有已训练好的模型参数可以忽略
sym, params = tvm.relay.testing.create_workload(sym)
# 模型量化
with relay.quantize.qconfig(skip_k_conv=0, round_for_shift=True):
    sym = relay.quantize.quantize(sym, params)
# 模型优化(经过试验,tvm系统默认有一些常用的resnet的卷积优化,注意这个优化是和卷积配置包括输入输出kernel的数量绑定的)
# 如果使用系统已有的卷积优化配置则速度可保证,如果使用一些新奇的卷积结构需要使用auto tuning优化,不然很慢
参考 https://docs.tvm.ai/tutorials/autotvm/tune_relay_cuda.html#auto-tuning-a-convolutional-network-for-nvidia-gpu
# load最优的优化算子,然后编译模型
with autotvm.apply_history_best(log_file):
    print("Compile...")
    with relay.build_config(opt_level=3):
        graph, lib, params = relay.build_module.build(
            net, target=target, params=params)
    # 加载参数并运行
    ctx = tvm.context(str(target), 0)
    module = runtime.create(graph, lib, ctx)
    data_tvm = tvm.nd.array((np.random.uniform(size=input_shape)).astype(dtype))
    module.set_input('data', data_tvm)
    module.set_input(**params)
    # module.set_input(**{k:tvm.nd.array(v, ctx) for k, v in params.items()})
    module.run()
    # 测试forward时间
    e = module.module.time_evaluator("run", ctx, number=2000, repeat=3)
    t = module(data_tvm).results
    t = np.array(t) * 1000
    print('{} (batch={}): {} ms'.format(name, batch, t.mean()))

tvm的一些代码链接tvm-cuda-int8-benchmark


  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
以下是使用Python和TVM实现GPU上并行矩阵乘法的简单示例: ```python import numpy as np import tvm from tvm import te, autotvm # 定义矩阵乘法运算 def matmul(n, m, p): # 定义输入矩阵 A = te.placeholder((n, m), name='A') B = te.placeholder((m, p), name='B') # 定义输出矩阵 k = te.reduce_axis((0, m), name='k') C = te.compute((n, p), lambda i, j: te.sum(A[i, k] * B[k, j], axis=k), name='C') # 创建计算图 s = te.create_schedule(C.op) # 选择目标设备 target = 'cuda' # 编译 func = tvm.build(s, [A, B, C], target=target) # 生成随机输入数据 a_np = np.random.uniform(size=(n, m)).astype(np.float32) b_np = np.random.uniform(size=(m, p)).astype(np.float32) c_np = np.zeros((n, p), dtype=np.float32) # 将数据上传到GPU ctx = tvm.gpu() a_tvm = tvm.nd.array(a_np, ctx) b_tvm = tvm.nd.array(b_np, ctx) c_tvm = tvm.nd.array(c_np, ctx) # 执行 func(a_tvm, b_tvm, c_tvm) tvm.testing.assert_allclose(c_np, c_tvm.asnumpy(), rtol=1e-5) # 测试 matmul(128, 256, 512) ``` 以上代码中,我们首先使用TVM的API定义了矩阵乘法运算,并创建了计算图。然后,我们选择了目标设备为GPU,并使用TVM的编译器将计算图编译为针对GPU的高效代码。接着,我们生成了随机的输入数据,并将其上传到GPU。最后,我们调用生成的代码执行矩阵乘法运算,并将输出结果与预期结果进行比对。 需要注意的是,在实际使用中,我们可能需要使用TVM的调度器对计算图进行优化,以进一步提高性能。同时,我们还可以使用TVM的自动调优工具Autotvm,自动选择最优的计算图和参数组合,以获得最佳性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值