Sundrops的专栏

deep learning

排序:
默认
按更新时间
按访问量

[强化学习-1] MP、MRP、MDP和Bellman equation

最近又开始重新学习强化学习了,记录一下历程 MP(马尔科夫过程) 定义:S是有限状态集合,P是状态转移概率矩阵 例子: 我们将一次有限步数的实验称作一个单独的episode 1. C1 C2 Pass Sleep 2. C1 FB FB MRP(马尔科夫奖励过程) ...

2018-08-21 17:39:48

阅读数:1

评论数:0

朴素贝叶斯(NB)、逻辑回归(LR)、隐马尔科夫模型(HMM)、条件随机场(CRF)

一直在搞CNN/RNN,对传统的知识了解一直不够,今天恰好看一篇论文需要CRF的知识,就借机都学习一下 梗概 朴素贝叶斯:生成式模型,条件独立 —> 序列形式 隐马尔科夫模型 —> 图形式 通用有向...

2018-07-22 13:57:04

阅读数:1067

评论数:0

Scene Graph Generation by Iterative Message Passing解读

lifeifei老师团队在发布了Visual Genome数据集后,又在Scene Graph Generation做的新的创新 关于Scene Graph Generation就不再赘述,在上一篇neural motif介绍过,neural motif比这篇晚一些,效果也好一些 Im...

2018-07-09 20:57:47

阅读数:1383

评论数:0

Neural Motifs: Scene Graph Parsing with Global Contex解读

计算机视觉一步步发展,从最初的分类、检测、分割来到了更深层的理解: Scene Graph Generation(场景图生成),即开始预测场景中物体之间的关系 Scene Graph简介 原有的检测box或者实例分割的mask不能充分地表达出图片的语义,因为两个相同的box/mask,...

2018-07-05 22:37:18

阅读数:1346

评论数:2

SNIPER: Efficient Multi-Scale Training解读

它算是An Analysis of Scale Invariance in Object Detection-SNIP的增强版,依然在思考怎么能更好的解决检测中的多尺度问题 Introduction RCNN本身具有很好的尺度不变形,因为它先从图片中提取proposal,然后都re...

2018-07-04 00:10:29

阅读数:1901

评论数:0

An Analysis of Scale Invariance in Object Detection – SNIP解读

今天无意中看到这篇好文,在网上搜索时发现Naiyan Wang也在知乎上推荐了,还中了CVPR2018的oral,佩服! Introduction 这篇文章首先想探讨一个问题:scale变化对识别和检测的影响,然后就是upsample对于小物体的检测有用嘛?根据这两个问题的分析,本文提...

2018-07-03 17:27:03

阅读数:1502

评论数:0

python2和3中zip的差异(坑)

最近用python写个东西,里面用到了一个zip,内存飙升,甚是费解,查阅资料后发现zip在python2和3中的机制不同 class Foo(object): def __init__(self): self.items = range(3) def _...

2018-06-25 23:06:02

阅读数:1556

评论数:0

Focal Loss for Dense Object Detection解读

还是Tsung-Yi Lin Piotr Dollar kaiming ross他们在Detection领域做的贡献Focal Loss for Dense Object Detection Motivation single stage的检测方法如YOLO、SSD等简单高效,但是精度...

2018-06-24 17:29:54

阅读数:1431

评论数:0

Learning to Segment Every Thing解读

kaiming ross他们一块的又一篇文章,基于mask rcnn的做的一个扩展,他们真是一直在推进着Detection Segmentation领域的发展 Introduction 目前做instance segmentation的方法都需要像素级标注,这样的话就很难有一个类别数目...

2018-06-21 19:14:53

阅读数:1310

评论数:0

faster rcnn源码解析

之前一直是使用faster rcnn对其中的代码并不是很了解,这次刚好复现mask rcnn就仔细阅读了faster rcnn,主要参考代码是pytorch-faster-rcnn ,部分参考和借用了以下博客的图片 [1] CNN目标检测(一):Faster RCNN详解 姊...

2017-11-20 23:50:01

阅读数:10433

评论数:7

mask rcnn解读

上一篇中介绍faster rcnn,这次mask 基本在上次的基础上加了点代码,参考和引用1. mask rcnn slides 2. kaiming he maskrcnn 3. Ardian Umam mask rcnn,欢迎fork简版mask rcnn。

2017-11-21 00:08:52

阅读数:4737

评论数:2

《故乡》

14年写的一首短诗,今天突然翻到了就改了改,留念一下。 《故乡》 五年前, 别故乡, 一番流浪, 归来时,想看她, 她不让。 只是听人说, 我最爱的油菜花没了, 黑黑的柏油路横亘其上。...

2018-05-21 23:47:01

阅读数:1557

评论数:0

Generative Models(生成模型)简介

著名物理学家费曼说过: What I cannot create, I do not understand. 所以我们要真正做到了解图像影音等,就必须要能创造它们。 Pixel RNN 收集一大堆图片,然后利用这些图片开始训练这个图片生成模型,根据前面的像素预测接下来的像素,训练结...

2018-04-30 23:08:37

阅读数:1519

评论数:0

Video Caption Tutorial

欢迎star fork: video-caption.pytorch或者video-caption.pytorch 任务介绍 和image caption一样,不过是将图片换成了一段视频,根据视频内容给出一句文字描述。可用于后续的视频检索或者摘要生成,帮助智能体或者有视觉障碍的人理...

2018-04-26 00:26:45

阅读数:2277

评论数:0

利用光流提升视频识别的速度和精度

daijifeng老师的两篇文章,利用光流提升视频识别的速度Deep Feature Flow for Video Recognition,利用光流提高视频的精度Flow-Guided Feature Aggregation for Video Object Detection,关于光流可参...

2018-04-03 11:59:39

阅读数:2485

评论数:0

光流在视频检测和分割的再应用

之前介绍了光流提升视频识别的速度和精度的文章,这次还是光流在视频检测和分割的应用,不过做的更完善了 Towards High Performance Video Object Detection 如图所示,较上一篇博客中的两篇文章主要有3个地方改进(详细请看该论文中的Ablatio...

2018-04-25 21:45:14

阅读数:2116

评论数:0

RNN, LSTM, GRU, SRU, Multi-Dimensional LSTM, Grid LSTM, Graph LSTM系列解读

RNN/Stacked RNN rnn一般根据输入和输出的数目分为5种 1. 一对一 最简单的rnn 2. 一对多 Image Captioning(image -> sequence of words) 3. 多对一 Sentiment Classificat...

2018-03-13 16:04:38

阅读数:2212

评论数:2

Softmax与SoftmaxWithLoss原理及代码详解

一直对softmax的反向传播的caffe代码看不懂,最近在朱神的数学理论支撑下给我详解了它的数学公式,才豁然开朗 SoftmaxWithLoss的由来 SoftmaxWithLoss也被称为交叉熵loss。 回忆一下交叉熵的公式,H(p,q)=−∑jpjlogqjH(p,q)=...

2017-07-29 20:07:54

阅读数:3025

评论数:0

OpenCV、Skimage、PIL图像处理的细节差异

上一篇博客中介绍了caffe实现多label输入,其中有一些图片处理的操作(训练验证数据),当时我选择了PIL库,但是在测试中用了caffe官网demo的代码,它使用了caffe提供的一些python接口,而它调用的是skimage这个库,所以有些许差异,可能会带来精度上的一些影响。这篇博客...

2017-01-11 20:28:38

阅读数:18593

评论数:5

caffe利用训练好的模型进行实际测试

前面的博客介绍了如何生成多label的训练数据,也介绍了测试时对图片处理需要注意的点,这篇博客就来介绍如何利用训练好的模型进行实际测试 官方版demo import numpy as np import os import sys import cv2 caffe_root = '...

2017-01-11 22:01:39

阅读数:5239

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭