Sundrops的专栏

deep learning

排序:
默认
按更新时间
按访问量

Learning to Segment Every Thing解读

kaiming ross他们一块的又一篇文章,基于mask rcnn的做的一个扩展,他们真是一直在推进着Detection Segmentation领域的发展 Introduction 目前做instance segmentation的方法都需要像素级标注,这样的话就很难有一个类别数目...

2018-06-21 19:14:53

阅读数:23

评论数:0

faster rcnn源码解析

之前一直是使用faster rcnn对其中的代码并不是很了解,这次刚好复现mask rcnn就仔细阅读了faster rcnn,主要参考代码是pytorch-faster-rcnn ,部分参考和借用了以下博客的图片 [1] CNN目标检测(一):Faster RCNN详解 姊...

2017-11-20 23:50:01

阅读数:6810

评论数:5

mask rcnn解读

上一篇中介绍faster rcnn,这次mask 基本在上次的基础上加了点代码,参考和引用1. mask rcnn slides 2. kaiming he maskrcnn 3. Ardian Umam mask rcnn,欢迎fork简版mask rcnn。

2017-11-21 00:08:52

阅读数:3473

评论数:2

《故乡》

14年写的一首短诗,今天突然翻到了就改了改,留念一下。 《故乡》 五年前, 别故乡, 一番流浪, 归来时,想看她, 她不让。 只是听人说, 我最爱的油菜花没了, 黑黑的柏油路横亘其上。...

2018-05-21 23:47:01

阅读数:133

评论数:0

Generative Models(生成模型)简介

著名物理学家费曼说过: What I cannot create, I do not understand. 所以我们要真正做到了解图像影音等,就必须要能创造它们。 Pixel RNN 收集一大堆图片,然后利用这些图片开始训练这个图片生成模型,根据前面的像素预测接下来的像素,训练结...

2018-04-30 23:08:37

阅读数:174

评论数:0

Video Caption Tutorial

欢迎star fork: video-caption.pytorch或者video-caption.pytorch 任务介绍 和image caption一样,不过是将图片换成了一段视频,根据视频内容给出一句文字描述。可用于后续的视频检索或者摘要生成,帮助智能体或者有视觉障碍的人理...

2018-04-26 00:26:45

阅读数:391

评论数:0

利用光流提升视频识别的速度和精度

daijifeng老师的两篇文章,利用光流提升视频识别的速度Deep Feature Flow for Video Recognition,利用光流提高视频的精度Flow-Guided Feature Aggregation for Video Object Detection,关于光流可参...

2018-04-03 11:59:39

阅读数:661

评论数:0

光流在视频检测和分割的再应用

之前介绍了光流提升视频识别的速度和精度的文章,这次还是光流在视频检测和分割的应用,不过做的更完善了 Towards High Performance Video Object Detection 如图所示,较上一篇博客中的两篇文章主要有3个地方改进(详细请看该论文中的Ablatio...

2018-04-25 21:45:14

阅读数:473

评论数:0

RNN, LSTM, GRU, SRU, Multi-Dimensional LSTM, Grid LSTM, Graph LSTM系列解读

RNN/Stacked RNN rnn一般根据输入和输出的数目分为5种 1. 一对一 最简单的rnn 2. 一对多 Image Captioning(image -> sequence of words) 3. 多对一 Sentiment Classificat...

2018-03-13 16:04:38

阅读数:508

评论数:2

Softmax与SoftmaxWithLoss原理及代码详解

一直对softmax的反向传播的caffe代码看不懂,最近在朱神的数学理论支撑下给我详解了它的数学公式,才豁然开朗 SoftmaxWithLoss的由来 SoftmaxWithLoss也被称为交叉熵loss。 回忆一下交叉熵的公式,H(p,q)=−∑jpjlogqjH(p,q)=...

2017-07-29 20:07:54

阅读数:2611

评论数:0

OpenCV、Skimage、PIL图像处理的细节差异

上一篇博客中介绍了caffe实现多label输入,其中有一些图片处理的操作(训练验证数据),当时我选择了PIL库,但是在测试中用了caffe官网demo的代码,它使用了caffe提供的一些python接口,而它调用的是skimage这个库,所以有些许差异,可能会带来精度上的一些影响。这篇博客...

2017-01-11 20:28:38

阅读数:15836

评论数:5

caffe利用训练好的模型进行实际测试

前面的博客介绍了如何生成多label的训练数据,也介绍了测试时对图片处理需要注意的点,这篇博客就来介绍如何利用训练好的模型进行实际测试 官方版demo import numpy as np import os import sys import cv2 caffe_root = '...

2017-01-11 22:01:39

阅读数:4700

评论数:0

光流介绍以及FlowNet学习笔记

FlowNet: Learning Optical Flow with Convolutional Networks pdf与相关代码: https://lmb.informatik.uni-freiburg.de/resources/binaries/ 光流(Optical ...

2017-05-04 23:07:20

阅读数:6432

评论数:5

caffe实现多label输入(修改源码版)

在我的上一篇博客中caffe实现多标签输入中,介绍了用把图像和label分来,各自做成lmdb,最后把label的lmdb用slice层分开,这篇博客介绍另一种修改源码的方法实现多label,比其他博客改动源码最少 简介 我们都知道ImageDataLayer是直接读取原图进行分类...

2017-01-19 11:43:12

阅读数:5832

评论数:48

caffe实现多标签输入(multilabel、multitask)

caffe里自带的convert_imageset.cpp直接生成一个data和label都集成在Datum的lmdb(Datum数据结构见最 后),只能集成一个label。而我们平时遇到的分类问题可能会有多个label比如颜色,种类等。 目前网上有多种解决方法: 1. 修改caffe代码...

2016-11-09 12:00:47

阅读数:11430

评论数:68

TH库学习(二): THTensorApply宏观理解(简化)

特别说明,本文大多思路和解释都源于: [1] PyTorch源码浅析(一) [2] PyTorch源码浅析(二) [3] tiny_lib TensorApply系列的宏函数是TH实现各种张量元素操作最重要的操作,它们负责把一个针对某些标量的操作应用到多个张量元素上去。在GPU部分是相当于...

2018-03-23 17:42:35

阅读数:117

评论数:0

TH库学习(一): THTensor, THStorage, THAllocator介绍

pytorch中的底层很多代码都是来源于的torch的低层Tensor库 TH = TorcH THC = TorcH Cuda THCS = TorcH Cuda Sparse THCUNN = TorcH CUda Neural Network (see cunn...

2018-03-22 00:45:11

阅读数:241

评论数:0

TH库学习: C语言实现模板编程(预备知识)

提前声明下面的例子和部分代码来源于PyTorch源码浅析(一) 引子 假如我们要实现一个函数: 两个Vector的相加,我们需要考虑int、float、double这3种类型,在C++中我们可以利用模板轻松搞定 // C++模板类,轻松搞定 template<t...

2018-03-21 00:23:40

阅读数:139

评论数:0

TH库学习: strided indexing scheme(预备知识)

数组步长 首先介绍一下步长的概念即:相邻数组元素在内存中的开始地址的距离。数组步长如果等于数组元素的尺寸,则数组在内存中是连续的。比如int[10],如果它是连续的,则第0个元素和第1个元素在内存中开始地址的距离为sizeof(int),即刚好差一个元素的大小,如果不连续,则会大于一个元素的大小...

2018-03-19 22:24:55

阅读数:168

评论数:0

Relation Networks for Object Detection解读

现在做detection的竞争相当激烈,能记住的就是ross kaiming团队和sunjian老师团队,还有今天的主角daijifeng老师团队了arxiv link Motivation 众所周知,如果能model出物体之间的关系,那么对物体识别是大有裨益的。可是在深度学习领域...

2018-03-09 15:06:38

阅读数:508

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭