Sundrops的专栏

deep learning

排序:
默认
按更新时间
按访问量

OpenCV、Skimage、PIL图像处理的细节差异

上一篇博客中介绍了caffe实现多label输入,其中有一些图片处理的操作(训练验证数据),当时我选择了PIL库,但是在测试中用了caffe官网demo的代码,它使用了caffe提供的一些python接口,而它调用的是skimage这个库,所以有些许差异,可能会带来精度上的一些影响。这篇博客...

2017-01-11 20:28:38

阅读数:20096

评论数:5

scipy csr_matrix和csc_matrix函数详解

概述在用python进行科学运算时,常常需要把一个稀疏的np.array压缩,这时候就用到scipy库中的sparse.csr_matrix(csr:Compressed Sparse Row marix)和sparse.csc**_matric(csc:Compressed Sparse **C...

2016-11-23 15:12:56

阅读数:14730

评论数:4

caffe实现多标签输入(multilabel、multitask)

caffe里自带的convert_imageset.cpp直接生成一个data和label都集成在Datum的lmdb(Datum数据结构见最 后),只能集成一个label。而我们平时遇到的分类问题可能会有多个label比如颜色,种类等。 目前网上有多种解决方法: 1. 修改caffe代码...

2016-11-09 12:00:47

阅读数:12760

评论数:72

faster rcnn源码解析

之前一直是使用faster rcnn对其中的代码并不是很了解,这次刚好复现mask rcnn就仔细阅读了faster rcnn,主要参考代码是pytorch-faster-rcnn ,部分参考和借用了以下博客的图片 [1] CNN目标检测(一):Faster RCNN详解 姊...

2017-11-20 23:50:01

阅读数:12727

评论数:7

光流介绍以及FlowNet学习笔记

FlowNet: Learning Optical Flow with Convolutional Networks pdf与相关代码: https://lmb.informatik.uni-freiburg.de/resources/binaries/ 光流(Optical ...

2017-05-04 23:07:20

阅读数:9253

评论数:7

CapsuleNet解读

最近hinton很早就提出了一个结构名为capsule,旨在解决cnn的固有缺点,本文是第一篇实现hinton capsule结构的论文Dynamic Routing Between Capsules,本文很大程度上翻译自“Understanding Dynamic Routing between...

2017-12-05 22:53:45

阅读数:7985

评论数:0

caffe实现多label输入(修改源码版)

在我的上一篇博客中caffe实现多标签输入中,介绍了用把图像和label分来,各自做成lmdb,最后把label的lmdb用slice层分开,这篇博客介绍另一种修改源码的方法实现多label,比其他博客改动源码最少 简介 我们都知道ImageDataLayer是直接读取原图进行分类...

2017-01-19 11:43:12

阅读数:6856

评论数:48

pycharm中import caffe/caffe2

pycharm中import caffe/caffe2

2017-04-26 17:05:39

阅读数:6098

评论数:4

R-FCN解读

最近一直做检测,发现检测领域好多好玩的东西啊,R-FCN是msra dai老师和kaiming做的,insight很赞,这次翻出来再学习一下。最近旷视科技又发了light RCNN,检测这领域真是日新月异。

2017-11-25 16:05:00

阅读数:5756

评论数:0

nvidia-docker快速迁移caffe环境(GPU+VNCserver+lxde桌面)

nvidia-docker快速迁移caffe环境(GPU+VNCserver+lxde桌面)

2017-02-22 23:05:17

阅读数:5689

评论数:0

mask rcnn解读

上一篇中介绍faster rcnn,这次mask 基本在上次的基础上加了点代码,参考和引用1. mask rcnn slides 2. kaiming he maskrcnn 3. Ardian Umam mask rcnn,欢迎fork简版mask rcnn。

2017-11-21 00:08:52

阅读数:5544

评论数:2

caffe利用训练好的模型进行实际测试

前面的博客介绍了如何生成多label的训练数据,也介绍了测试时对图片处理需要注意的点,这篇博客就来介绍如何利用训练好的模型进行实际测试 官方版demo import numpy as np import os import sys import cv2 caffe_root = '...

2017-01-11 22:01:39

阅读数:5537

评论数:0

Android源码编译及替换成自己编译的linux内核

Android源码和内核编译及替换会遇到不少问题,网上也有许多解决办法,但是很少有涉及真机的,罗老师写过Android源码编译及内核编译,但是都是虚拟机,和真机差别还是不小的,我经过了很多折磨完成后特地总结一下网络上很少提及的一些经验,与大家分享.

2015-10-15 14:20:37

阅读数:5214

评论数:0

SPPNet论文笔记和caffe实现说明

SPPNet:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 自己总结的一些收获以及在caffe上复现SPPNet论文中的实验

2016-12-29 15:17:03

阅读数:4651

评论数:16

FPN解读

前两篇博客中都说到了FPN这个神器,今天就花了点时间看了下这篇论文,喜欢这个很赞很干净的结构。

2017-11-29 00:34:41

阅读数:4456

评论数:0

Path Aggregation Network for Instance Segmentation解读

本篇论文是COCO 2017 instance segmentation的冠军,读了这篇论文再加上之前读论文的体会,和朱神交流后得到一个感悟: 同样一个work的小改动,你不能挖的深或者看得很浅,那你就是trick,而别人就能给科研界带来启发,ResNet很简单,但是kaiming他们就能把...

2018-03-08 16:32:38

阅读数:4123

评论数:3

Deformable Convolutional Networks解读

这篇论文是daijifeng老师又一篇好文,一贯的好想法,而且实现的很漂亮。

2017-12-14 17:42:22

阅读数:3971

评论数:5

梯度下降法和牛顿法优化原理

我们假设任何规律都是一个函数,机器学习要做的就是设计模型来拟合这个函数,如何使自己的模型更能贴近这个函数就是我今天要讲的优化问题。 首先假设我们的模型为函数f(x),给定一个输入x,得到预测结果f(x),而真实的结果为y,我们优化的目的就是使f(x)和y贴近。一般我们会定义一个损失函数,来衡量这...

2017-03-13 17:14:33

阅读数:3517

评论数:0

Softmax与SoftmaxWithLoss原理及代码详解

一直对softmax的反向传播的caffe代码看不懂,最近在朱神的数学理论支撑下给我详解了它的数学公式,才豁然开朗 SoftmaxWithLoss的由来 SoftmaxWithLoss也被称为交叉熵loss。 回忆一下交叉熵的公式,H(p,q)=−∑jpjlogqjH(p,q)=...

2017-07-29 20:07:54

阅读数:3311

评论数:0

Python实现神经网络

自己动手一步一步实现神经网络

2017-04-28 15:15:03

阅读数:2796

评论数:4

提示
确定要删除当前文章?
取消 删除
关闭
关闭