Sundrops的专栏

deep learning

排序:
默认
按更新时间
按访问量

R-FCN解读

最近一直做检测,发现检测领域好多好玩的东西啊,R-FCN是msra dai老师和kaiming做的,insight很赞,这次翻出来再学习一下。最近旷视科技又发了light RCNN,检测这领域真是日新月异。

2017-11-25 16:05:00

阅读数:6173

评论数:0

mask rcnn解读

上一篇中介绍faster rcnn,这次mask 基本在上次的基础上加了点代码,参考和引用1. mask rcnn slides 2. kaiming he maskrcnn 3. Ardian Umam mask rcnn,欢迎fork简版mask rcnn。

2017-11-21 00:08:52

阅读数:6367

评论数:2

faster rcnn源码解析

之前一直是使用faster rcnn对其中的代码并不是很了解,这次刚好复现mask rcnn就仔细阅读了faster rcnn,主要参考代码是pytorch-faster-rcnn ,部分参考和借用了以下博客的图片 [1] CNN目标检测(一):Faster RCNN详解 姊...

2017-11-20 23:50:01

阅读数:14561

评论数:9

[强化学习-7] 模型和规划(model and planning)

之前的博客都在讲从之前的experience中学习policy或者value function,这一篇博客讲解从之前的experience中学习model 何为model 一句话总结就是状态转移概率和奖励 Learning a model 状态转移概率s, a → s‘...

2018-09-07 11:40:48

阅读数:42

评论数:0

[强化学习-6] 策略梯度

强化学习的目标是学习一个策略来获得最大的累计奖励,之前的几篇博客是value-based的方法,即先估计状态价值V(s)或者状态动作价值Q(s, a),然后根据这些估值得到策略,而本文要讲一下policy-based的方法。 Policy-based 简介 value based中...

2018-09-04 18:52:12

阅读数:67

评论数:0

[强化学习-5] 值函数近似

前几篇博客讲了如何进行值函数估计,估计完之后这些结果怎么保持呢,状态动作空间很小的就存在表中,用的时候查表获取v(s)和Q(s, a),但当状态空间是高维连续时,需要储存的东西就太多了,这个表就不行了,这时我们会采用函数逼近(function approximation)的方式逼近值函数: ...

2018-09-01 14:44:46

阅读数:45

评论数:0

[强化学习-4] 蒙特卡洛和时序差分法-控制

蒙特卡洛

2018-08-31 16:47:04

阅读数:49

评论数:0

[强化学习-3] 蒙特卡洛和时序差分法-预测

上一次我们在讲解值函数估计时用了DP,这次采用蒙特卡洛和时序差分

2018-08-29 19:57:34

阅读数:58

评论数:0

[强化学习-2] DP-值估计和策略控制

上一篇博客讲了强化学习中的几个基本概念,其中推导的贝尔曼方程是一个很重要的部分。在上一篇博客里也说过MRP里的贝尔曼方程可以通过求解矩阵直接得到收敛后的state-value function,但是计算复杂度高,我们这节采用动态规划的方式求解 预测问题 定义:MRP或者给定策略π的...

2018-08-22 15:15:35

阅读数:117

评论数:0

[强化学习-1] MP、MRP、MDP和Bellman equation

最近又开始重新学习强化学习了,记录一下历程 MP(马尔科夫过程) 定义:S是有限状态集合,P是状态转移概率矩阵 例子: 我们将一次有限步数的实验称作一个单独的episode 1. C1 C2 Pass Sleep 2. C1 FB FB MRP(马尔科夫奖励过程) ...

2018-08-21 17:39:48

阅读数:92

评论数:0

朴素贝叶斯(NB)、逻辑回归(LR)、隐马尔科夫模型(HMM)、条件随机场(CRF)

一直在搞CNN/RNN,对传统的知识了解一直不够,今天恰好看一篇论文需要CRF的知识,就借机都学习一下 梗概 朴素贝叶斯:生成式模型,条件独立 —> 序列形式 隐马尔科夫模型 —> 图形式 通用有向...

2018-07-22 13:57:04

阅读数:1200

评论数:0

Scene Graph Generation by Iterative Message Passing解读

lifeifei老师团队在发布了Visual Genome数据集后,又在Scene Graph Generation做的新的创新 关于Scene Graph Generation就不再赘述,在上一篇neural motif介绍过,neural motif比这篇晚一些,效果也好一些 Im...

2018-07-09 20:57:47

阅读数:1529

评论数:0

Neural Motifs: Scene Graph Parsing with Global Contex解读

计算机视觉一步步发展,从最初的分类、检测、分割来到了更深层的理解: Scene Graph Generation(场景图生成),即开始预测场景中物体之间的关系 Scene Graph简介 原有的检测box或者实例分割的mask不能充分地表达出图片的语义,因为两个相同的box...

2018-07-05 22:37:18

阅读数:1498

评论数:3

SNIPER: Efficient Multi-Scale Training解读

它算是An Analysis of Scale Invariance in Object Detection-SNIP的增强版,依然在思考怎么能更好的解决检测中的多尺度问题 Introduction RCNN本身具有很好的尺度不变形,因为它先从图片中提取proposal,然后都re...

2018-07-04 00:10:29

阅读数:2550

评论数:0

An Analysis of Scale Invariance in Object Detection – SNIP解读

今天无意中看到这篇好文,在网上搜索时发现Naiyan Wang也在知乎上推荐了,还中了CVPR2018的oral,佩服! Introduction 这篇文章首先想探讨一个问题:scale变化对识别和检测的影响,然后就是upsample对于小物体的检测有用嘛?根据这两个问题的分析,本文提...

2018-07-03 17:27:03

阅读数:1764

评论数:0

python2和3中zip的差异(坑)

最近用python写个东西,里面用到了一个zip,内存飙升,甚是费解,查阅资料后发现zip在python2和3中的机制不同 class Foo(object): def __init__(self): self.items = range(3) def _...

2018-06-25 23:06:02

阅读数:1682

评论数:0

Focal Loss for Dense Object Detection解读

还是Tsung-Yi Lin Piotr Dollar kaiming ross他们在Detection领域做的贡献Focal Loss for Dense Object Detection Motivation single stage的检测方法如YOLO、SSD等简单高效,但是精度...

2018-06-24 17:29:54

阅读数:1503

评论数:0

Learning to Segment Every Thing解读

kaiming ross他们一块的又一篇文章,基于mask rcnn的做的一个扩展,他们真是一直在推进着Detection Segmentation领域的发展 Introduction 目前做instance segmentation的方法都需要像素级标注,这样的话就很难有一个类别数目...

2018-06-21 19:14:53

阅读数:1410

评论数:0

《故乡》

14年写的一首短诗,今天突然翻到了就改了改,留念一下。 《故乡》 五年前, 别故乡, 一番流浪, 归来时,想看她, 她不让。 只是听人说, 我最爱的油菜花没了, 黑黑的柏油路横亘其上。...

2018-05-21 23:47:01

阅读数:1613

评论数:2

Generative Models(生成模型)简介

著名物理学家费曼说过: What I cannot create, I do not understand. 所以我们要真正做到了解图像影音等,就必须要能创造它们。 Pixel RNN 收集一大堆图片,然后利用这些图片开始训练这个图片生成模型,根据前面的像素预测接下来的像素,训练结...

2018-04-30 23:08:37

阅读数:1605

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭