poj2533--Longest Ordered Subsequence(dp:最长上升子序列)

Longest Ordered Subsequence
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 33943 Accepted: 14871

Description

A numeric sequence of   ai  is ordered if   a1  <   a2  < ... <   aN. Let the subsequence of the given numeric sequence ( a1,   a2, ...,   aN) be any sequence ( ai1,   ai2, ...,   aiK), where 1 <=   i1  <   i2  < ... <   iK  <=   N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

Source

Northeastern Europe 2002, Far-Eastern Subregion
求最长上升子序列:
dp的求法,初始化时可以将a[0]初始化成一个比所有数小的值,或者是将dp[]全清为1,因为最长上升子序列中,会包含自身,所以最小为1
 
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int a[12000] , dp[12000] ;
int main()
{
    int i , j , n , max1 ;
    while(scanf("%d", &n)!=EOF)
    {
        memset(dp,0,sizeof(dp));
        a[0] = -1 ;
        for(i = 1 ; i <= n ; i++)
            scanf("%d", &a[i]);
        for(i = 1 ; i <= n ; i++)
            for(j = 0 ; j < i ; j++)
                if( a[j] < a[i] && dp[j]+1 > dp[i] )
                    dp[i] = dp[j] + 1 ;
        max1 = 0 ;
        for(i = 1 ; i <= n ; i++)
            max1 = max(max1,dp[i]);
        printf("%d\n", max1);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值