Amr is a young coder who likes music a lot. He always wanted to learn how to play music but he was busy coding so he got an idea.
Amr has n instruments, it takes ai days to learn i-th instrument. Being busy, Amr dedicated k days to learn how to play the maximum possible number of instruments.
Amr asked for your help to distribute his free days between instruments so that he can achieve his goal.
The first line contains two numbers n, k (1 ≤ n ≤ 100, 0 ≤ k ≤ 10 000), the number of instruments and number of days respectively.
The second line contains n integers ai (1 ≤ ai ≤ 100), representing number of days required to learn the i-th instrument.
In the first line output one integer m representing the maximum number of instruments Amr can learn.
In the second line output m space-separated integers: the indices of instruments to be learnt. You may output indices in any order.
if there are multiple optimal solutions output any. It is not necessary to use all days for studying.
4 10 4 3 1 2
4 1 2 3 4
5 6 4 3 1 1 2
3 1 3 4
1 3 4
0
In the first test Amr can learn all 4 instruments.
In the second test other possible solutions are: {2, 3, 5} or {3, 4, 5}.
In the third test Amr doesn't have enough time to learn the only presented instrument.
给出第i个的学习时间ai,排序后,由小到大搜索,记录最多能学几个。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;
struct node{
int a , i ;
} p[110];
int cmp(node x,node y)
{
return x.a < y.a ;
}
int main()
{
int n , k , num ;
while( scanf("%d %d", &n, &k) != EOF )
{
num = 0 ;
int i ;
for(i = 0 ; i < n ; i++)
{
scanf("%d", &p[i].a) ;
p[i].i = i+1 ;
}
sort(p,p+n,cmp) ;
for(i = 0 ; i < n ; i++)
if( k >= p[i].a )
{
k -= p[i].a ;
}
else
break ;
num = i ;
printf("%d\n", num) ;
if( num == 0 ) continue ;
for(i = 0 ; i < num-1 ; i++)
{
printf("%d ", p[i].i) ;
}
printf("%d\n", p[i].i) ;
}
return 0;
}
Amr loves Geometry. One day he came up with a very interesting problem.
Amr has a circle of radius r and center in point (x, y). He wants the circle center to be in new position (x', y').
In one step Amr can put a pin to the border of the circle in a certain point, then rotate the circle around that pin by any angle and finally remove the pin.
Help Amr to achieve his goal in minimum number of steps.
Input consists of 5 space-separated integers r, x, y, x' y' (1 ≤ r ≤ 105, - 105 ≤ x, y, x', y' ≤ 105), circle radius, coordinates of original center of the circle and coordinates of destination center of the circle respectively.
Output a single integer — minimum number of steps required to move the center of the circle to the destination point.
2 0 0 0 4
1
1 1 1 4 4
3
4 5 6 5 6
0
In the first sample test the optimal way is to put a pin at point (0, 2) and rotate the circle by 180 degrees counter-clockwise (or clockwise, no matter).

给出r和初始的原点,问按圆的某点点来旋转,最小多少次才能转到指定的位置。
按圆的某点来旋转,可以将圆心移动到2*r内的所有点,所以直接除,然后向上取整。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std ;
#define eps 1e-8
int main()
{
int n ;
double r , x1 , y1 , x2 , y2 , l , m ;
while( scanf("%lf %lf %lf %lf %lf", &r, &x1, &y1, &x2, &y2) != EOF )
{
l = sqrt( (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) ) ;
m = l / (2.0*r) ;
n = m ;
if( l - (2.0*r)*n > eps )
n++ ;
printf("%d\n", n) ;
}
return 0;
}
本文包含两个编程挑战:一是帮助一位热爱音乐的年轻程序员Amr在有限时间内学习尽可能多的乐器;二是解决Amr提出的一个有趣的几何问题,即通过旋转圆心来实现圆的位置变化,并找出最少的操作步骤。
1199

被折叠的 条评论
为什么被折叠?



