poj2728--Desert King(最优比率生成树)

poj2728:题目链接

题目大意:给出n个村庄的坐标和高度,给这n个村庄修n-1水管,连接起n个村庄,两个村庄之间修水管的花费是高度差,距离是欧几里得距离(空间距离),要求修的水管的花费和/距离和最小。

按0-1规划来做,注意求最小生成树的时候,用prim,因为边会有n^2条。用c++提交

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std ;
#define eqs 1e-6
#define INF 0x3f3f3f3f
struct point{
    double x , y , z ;
}p[1100] ;
int vis[1100] , n ;
double dis[1100] ;
double low , mid , high ;
double f(int i,int j,double mid) {
    return fabs(p[i].z-p[j].z) - mid*sqrt( (p[i].x-p[j].x)*(p[i].x-p[j].x) + (p[i].y-p[j].y)*(p[i].y-p[j].y) ) ;
}
double solve(double mid) {
    int i , j , id , u ;
    double ans = 0 , min1 ;
    memset(vis,0,sizeof(vis)) ;
    for(i = 0 ; i < n ; i++) dis[i] = INF ;
    vis[0] = 1 ; dis[0] = 0 ; u = 0 ;
    for( i = 1 ; i < n ; i++ ) {
        min1 = INF ; id = 0 ;
        for(j = 0 ; j < n ; j++) {
            if( vis[j] ) continue ;
            dis[j] = min( dis[j],f(u,j,mid) ) ;
            if( min1-dis[j] >= eqs ) {
                min1 = dis[j] ;
                id = j ;
            }
        }
        ans += min1 ;
        vis[id] = 1 ;
        u = id ;
    }
    return ans ;
}
int main() {
    int i , j ;
    double temp , max1 , min1 ;
    while( scanf("%d", &n) && n ) {
        low = high = mid = 0.0 ;
        max1 = 0 ; min1 = INF ;
        for(i = 0 ; i < n ; i++) {
            scanf("%lf %lf %lf", &p[i].x, &p[i].y, &p[i].z) ;
                min1 = min(min1,p[i].z) ;
                max1 = max(max1,p[i].z) ;
        }
        high = (max1-min1)*n ;
        while( high - low > eqs) {
            mid = (low + high) / 2.0 ;
            temp = solve(mid) ;
            if( fabs(temp) < eqs ) break ;
            if( temp < 0 ) high = mid ;
            else low = mid ;
        }
        printf("%.3f\n", mid) ;
    }
    return 0 ;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值