【点云论文速读】最佳点云分割分析

81 篇文章 586 订阅 ¥9.90 ¥99.00
18 篇文章 9 订阅
该论文提出了一种结合图论搜索和数据驱动学习的方法,用于在点云中寻找最佳分割。通过构建树结构并利用动态规划,算法在Kitti 3D检测数据集上对比传统分割方法表现出色,特别是在少见类别中。
摘要由CSDN通过智能技术生成

点云PCL免费知识星球,点云论文速读。

标题:Learning to Optimally Segment Point Clouds

作者:Peiyun Hu, David Held

星球ID:particle

欢迎各位加入免费知识星球,获取PDF论文,欢迎转发朋友圈分享快乐。

●论文摘要

我们提出了一种将图论搜索与数据驱动的学习相结合的方法:在一组候选分割中搜索综合目标性(objectness)评分较高的候选分割。我们证明了,如果根据分割中最低的目标性对分割进行评分,那么就有一种有效的算法可以在成倍数量的候选分割中找到最优的最坏情况分割。此外,我们还针对平均情况提出了一种有效的算法。为了进行评估,我们将KITTI 3D检测重新用作分割基准,并通过经验证明了我们的算法在分割点云上的性能明显优于过去的自下而上的分割方法和自上而下的基于对象的算法。

●主要贡献

• 利用几何约束减少候选分割的数量,并构建树结构

• 利用树结构进行最优分割搜索,提出可应用动态规划的高效搜索算法

文章使用KITTI作为实验数据集,点云分割和点云实例分割的结果如下图 TABLE I 和 TABLE II 所示:本文提出的方法与 SECOND++ 相比在 car 等常见分类中表现更差,但是在 mis

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云PCL公众号博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值