python排序算法之(快速排序)

快速排序

 

         快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。

快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n²),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好,可是这是为什么呢,我也不知道。好在我的强迫症又犯了,查了 N 多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案:

快速排序的最坏运行情况是 O(n²),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。

1. 算法步骤

  1. 从数列中挑出一个元素,称为 “基准”(pivot);

  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

2. 动图演示

 
在这里插入图片描述
代码如下:

 

 

3. Python 代码实现

def quickSort(arr, left=None, right=None):
    left = 0 if not isinstance(left,(int, float)) else left
    right = len(arr)-1 if not isinstance(right,(int, float)) else right
    if left < right:
        partitionIndex = partition(arr, left, right)
        quickSort(arr, left, partitionIndex-1)
        quickSort(arr, partitionIndex+1, right)
    return arr

def partition(arr, left, right):
    pivot = left
    index = pivot+1
    i = index
    while  i <= right:
        if arr[i] < arr[pivot]:
            swap(arr, i, index)
            index+=1
        i+=1
    swap(arr,pivot,index-1)
    return index-1

def swap(arr, i, j):
    arr[i], arr[j] = arr[j], arr[i]

 

快速排序(Quicksort)是对冒泡排序的一种改进。
快速排序由C. A. R. Hoare在1960年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

代码如下:

代码如下:

    public static void quickSort(int[] arr, int left, int right) {
        int l = left;// 左下标
        int r = right;// 右下标
        int pivot = arr[(left + right) / 2];// 找到中间的值
        // 将比pivot小的值放在其左边,比pivot大的值放在其右边
        while (l < r) {
            // 在pivot左边寻找,直至找到大于等于pivot的值才退出
            while (arr[l] < pivot) {
                l += 1;// 将l右移一位
            }
            // 在pivot右边寻找,直至找到小于等于pivot的值才退出
            while (arr[r] > pivot) {
                r -= 1;// 将r左移一位
            }
            if (l >= r) {
                // 左右下标重合,寻找完毕,退出循环
                break;
            }
            // 交换元素
            int temp = arr[l];
            arr[l] = arr[r];
            arr[r] = temp;

            //倘若发现值相等的情况,则没有比较的必要,直接移动下标即可
        
            // 如果交换完后,发现arr[l]==pivot,此时应将r左移一位
            if (arr[l] == pivot) {
                r -= 1;
            }
            // 如果交换完后,发现arr[r]==pivot,此时应将l右移一位
            if (arr[r] == pivot) {
                l += 1;
            }
        }
        // 如果l==r,要把这两个下标错开,否则会出现无限递归,导致栈溢出的情况
        if (l == r) {
            l += 1;
            r -= 1;
        }
        // 向左递归
        if (left < r) {
            quickSort(arr, left, r);
        }
        // 向右递归
        if (right > l) {
            quickSort(arr, l, right);
        }
    }

测试代码:

    public static void main(String[] args) {
        int[] arr = { 3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48 };
        quickSort(arr, 0, arr.length - 1);
        System.out.println(Arrays.toString(arr));
    }

运行结果:

[2, 3, 4, 5, 15, 19, 26, 27, 36, 44, 38, 46, 47, 48, 50]

快速排序的实现原理很简单,就是将原数组分成两部分,然后以中间值为标准,比它小的就放其左边,比它大的就放其右边,然后在左右两边又以相同的方式继续排序。
所以在代码实现过程中,首先要创建两个移动的变量,一个从最左边开始往右移动,一个从最右边开始往左移动,通过这两个变量来遍历左右两部分的元素。当发现左边有大于中间数的元素,右边有小于中间数的元素,此时就进行交换。当两个变量重合也就是相等的时候遍历结束,然后左右两部分作递归处理。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值