深度学习方法:受限玻尔兹曼机RBM(三)模型求解,Gibbs sampling

转自:http://blog.csdn.net/xbinworld/article/details/45128733

欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld。 
技术交流QQ群:433250724,欢迎对算法、技术、应用感兴趣的同学加入。

接下来重点讲一下RBM模型求解方法,其实用的依然是梯度优化方法,但是求解需要用到随机采样的方法,常见的有:Gibbs Sampling和对比散度(contrastive divergence, CD[8])算法。

RBM目标函数

假设给定的训练集合是S={vi},总数是ns,其中每个样本表示为vi=(vi1,vi2,,vinv),且都是独立同分布i.i.d的。RBM采用最大似然估计,即最大化 

lnLS=lni=1nsP(vi)=i=1nslnP(vi)

参数表示为θ=(W,a,b),因此统一的参数更新表达式为: 

θ=θ+ηlnLSθ

其中,η表示学习速率。因此,很明显,只要我们可以求解出参数的梯度,我们就可以求解RMB模型了。我们先考虑任意单个训练样本(v0)的情况,即 
LS=lnP(v0)=ln(1ZheE(v0,h))=lnheE(v0,h)lnv,heE(v,h)

其中v表示任意的训练样本,而v0则表示一个特定的样本。

LSθ=lnP(v0)θ=θ(lnheE(v0,h))θ(lnv,heE(v,h))=1heE(v0,h)heE(v0,h)E(v0,h)θ+1v,heE(v,h)v,heE(v,h)E(v,h)θ=hP(h|v0)E(v0,h)θ+v,hP(h,v)E(v,h)θ

(其中第3个等式左边内条件概率P(h|v0),因为eE(v0,h)heE(v0,h)=eE(v0,h)/ZheE(v0,h)/Z=P(v0,h)P(v0)=P(h|v0)

上面式子的两个部分的含义是期望——左边是梯度E(v0,h)θ在条件概率分布P(h|v0)下的期望;右边是梯度E(v,h)θ在联合概率分布P(h,v)下的期望。要求前面的条件概率是比较容易一些的,而要求后面的联合概率分布是非常困难的,因为它包含了归一化因子Z(对所有可能的取值求和,连续的情况下是积分),因此我们采用一些随机采样来近似求解。把上面式子再推导一步,可以得到,

LSθ=hP(h|v0)E(v0,h)θ+vP(v)hP(h|v)E(v,h)θ

因此,我们重点就是需要就算hP(h|v)E(v,h)θ,特别的,针对参数W,a,b来说,有

hP(h|v)E(v,h)wij=hP(h|v)hivj=hP(hi|v)P(hi|v)hivj=hiP(hi|v)hiP(hi|v)hivj=hiP(hi|v)hivj=(P(hi=1|v)1vj+P(hi=0|v)0vj)=P(hi=1|v)vj

类似的,我们可以很容易得到:

hP(h|v)E(v,h)ai=vi

hP(h|v)E(v,h)bj=P(hi=1|v)

于是,我们很容易得到, 

lnP(v0)wij=hP(h|v0)E(v0,h)wij+vP(v)hP(h|v)E(v,h)wij=P(hi=1|v0)v0jvP(v)P(hi=1|v)vj

lnP(v0)ai=v0ivP(v)vi

lnP(v0)bi=P(hi=1|v0)vP(v)P(hi=1|v)

上面求出了一个样本的梯度,对于ns个样本有

LSwij=m=1ns[P(hi=1|vm)vmjvP(v)P(hi=1|v)vj]

LSai=m=1ns[vmivP(v)vi]

LSbi=m=1ns[P(hi=1|vm)vP(v)P(hi=1|v)]

到这里就比较明确了,主要就是要求出上面三个梯度;但是因为不好直接求概率分布P(v),前面分析过,计算复杂度非常大,因此采用一些随机采样的方法来得到近似的解。看这三个梯度的第二项实际上都是求期望,而我们知道,样本的均值是随机变量期望的无偏估计。

Gibbs Sampling

很多资料都有提到RBM可以用Gibbs Sampling来做,但是具体怎么做不讲(是不是有点蛋疼?),可能很多人也不清楚到底怎么做。下面稍微介绍一下。

吉布斯采样(Gibbs sampling),是MCMC方法的一种,具体可以看我前面整理的随机采样MCMC的文章。总的来说,Gibbs采样可以从一个复杂概率分布P(X)下生成数据,只要我们知道它每一个分量的相对于其他分量的条件概率P(Xk|Xk),就可以对其进行采样。而RBM模型的特殊性,隐藏层神经元的状态只受可见层影响(反之亦然),而且同一层神经元之间是相互独立的,那么就可以根据如下方法依次采样:

这里写图片描述

也就是说hi是以概率P(hi|v0)为1,其他的都类似。这样当我们迭代足够次以后,我们就可以得到满足联合概率分布P(v,h)下的样本(v,h),其中样本(v)可以近似认为是P(v)下的样本,下图也说明了这个迭代采样的过程: 
这里写图片描述 
有了样本(v)就可以求出上面写到的三个梯度(LSwij,LSai,LSbi)了,用梯度上升就可以对参数进行更新了。(实际中,可以在k次迭代以后,得到样本集合{v},比如迭代100次取后面一半,带入上面梯度公式的后半部分计算平均值。)

看起来很简单是不是?但是问题是,每一次gibbs采样过程都需要反复迭代很多次以保证马尔科夫链收敛,而这只是一次梯度更新,多次梯度更新需要反复使用gibbs采样,使得算法运行效率非常低。为了加速RBM的训练过程,Hinton等人提出了对比散度(Contrastive Divergence)方法,大大加快了RBM的训练速度,将在下一篇重点讲一下。

OK,本篇先到这里。平时工作比较忙,加班什么的(IT的都这样),晚上回到家比较晚,每天只能挤一点点时间写,写的比较慢,见谅。RBM这一块可以看的资料很多,网上一搜一大堆,还包括hinton的一些论文和Bengio的综述[9],不过具体手写出来的思路还是借鉴了[7],看归看,我会自己推导并用自己的语言写出来,大家有什么问题都可以留言讨论。下一篇最后讲一下CD算法,后面有时间再拿code出来剖析一下。


觉得有一点点价值,就支持一下哈!花了很多时间手打公式的说~更多内容请关注Bin的专栏


参考资料 
[1] http://www.chawenti.com/articles/17243.html 
[2] 张春霞,受限波尔兹曼机简介 
[3] http://www.cnblogs.com/tornadomeet/archive/2013/03/27/2984725.html 
[4] http://deeplearning.net/tutorial/rbm.html 
[5] Asja Fischer, and Christian Igel,An Introduction to RBM 
[6] G.Hinton, A Practical Guide to Training Restricted Boltzmann Machines 
[7] http://blog.csdn.net/itplus/article/details/19168937 
[8] G.Hinton, Training products of experts by minimizing contrastive divergence, 2002. 
[9] Bengio, Learning Deep Architectures for AI, 2009


展开阅读全文

没有更多推荐了,返回首页