Reference to 《learning opencv3 computer vision with python》
import cv2
import numpy as np
camera = cv2.VideoCapture(0)
es = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (9, 4))
kernel = np.ones((5, 5), np.uint8)
background = None
while(True):
ret, frame = camera.read()
if background is None:
background = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
background = cv2.GaussianBlur(background, (21, 21), 0)
continue
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray_frame = cv2.GaussianBlur(gray_frame, (21, 21), 0)
diff = cv2.absdiff(background, gray_frame)
diff = cv2.threshold(diff, 25, 255, cv2.THRESH_BINARY)[1]
diff = cv2.dilate(diff, es, iterations=2)
image, cnts, hierarchy = cv2.findContours(diff.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in cnts:
if cv2.contourArea(c) < 1500:
continue
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.imshow("Contours", frame)
cv2.imshow("Diff ", diff)
if cv2.waitKey(10) & 0xff == ord("q"):
break
cv2.destroyAllWindows()
camera.release()