flume的学习过程

1.flume的介绍

Flume最早是Cloudera提供的日志收集系统,目前是Apache下的一个孵化项目,Flume支持在日志系统中定制各类数据发送方,用于收集数据。是目前企业正在使用的一种日志收集系统 flume的架构如下图所示


flume的内部可以说是一个一个的Agent,里面包含source,channel和sink,source即是数据的来源,sink即是数据的输出,channel可以理解为是一个通道。flume的配置和使用也是围绕这三个部分进行展开的。 source即是数据的来源,数据的来源可以分为两种,一种数据来源是主动进行获取,一种数据来源是被动去获取(别人给你传)。sink可以理解为数据存储的位置即flume接收完成数据之后 将数据存放在何处。接下来我们以flume官网上的一个例子进行搭建flume

2.flume的简单搭建

  首先我们在自己的服务器上进行安装flume,安装过程极为简单,在此不做详细的说明

3.flume的简单例子

   在这里,我们给出一个示例配置文件,描述单节点Flume部署。该配置允许用户生成事件并随后将其记录到控制台

#example.conf:单节点Flume配置

#将该代理商的组件命名为
a1.sources  =  r1 
a1.sinks  =  k1 
a1.channels  =  c1

#描述/配置源
a1.sources.r1.type  =  netcat 
a1.sources.r1.bind  =  localhost 
a1.sources.r1.port  =  44444

#描述sink 
a1.sinks.k1.type  =  logger

#使用缓冲内存中事件的通道
a1.channels.c1.type  =  memory 
a1.channels.c1.capacity  =  1000 
a1.channels.c1.transactionCapacity  =  100

#将信源和信宿绑定到信道
a1.sources.r1.channels  =  c1 
a1.sinks.k1.channel  =  c1

该配置定义了一个名为a1的代理。a1有一个侦听端口44444上的数据的源,一个缓存内存中事件数据的通道,以及一个将事件数据记录到控制台的接收器。配置文件命名各种组件,然后描述它们的类型和配置参数。给定的配置文件可能会定义多个命名代理; 当一个给定的Flume进程启动时,会传递一个标志,告诉它哪个指定的代理要显示。

给定这个配置文件,我们可以按如下方式启动Flume:

$ bin / flume-ng agent --conf conf --conf -file example.conf --name a1 -Dflume.root.logger = INFO,console

请注意,在完整部署中,我们通常会包含一个选项:-- conf = <conf-dir>所述<CONF-DIR>目录将包括一个外壳脚本flume-env.sh和潜在的一个log4j的属性文件。在这个例子中,我们传递一个Java选项来强制Flume登录到控制台,我们没有自定义环境脚本。

从一个单独的终端,我们可以telnet端口44444并发送一个事件给Flume:

$ telnet localhost 44444
尝试127.0.0.1 ...
连接到localhost.localdomain(127.0.0.1)。
转义字符是'^]'。
你好,世界!<ENTER>

原始的Flume终端将在日志消息中输出事件。

19年12月6日15 32:19 INFO source.NetcatSource:创建的ServerSocket:sun.nio.ch.ServerSocketChannelImpl [/127.0.0.1:44444] 
19年12月6日15 32:34 INFO sink.LoggerSink:事件:{头:{}体:48 65 6C 6F 6C 20 77 72 6F 6C 64 21 0D世界你好!}
恭喜 - 您已经成功配置并部署了Flume代理


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
上层应用业务对实时数据的需求,主要包含两部分内容:1、 整体数据的实时分析。2、 AB实验效果的实时监控。这几部分数据需求,都需要进行的下钻分析支持,我们希望能够建立统一的实时OLAP数据仓库,并提供一套安全、可靠的、灵活的实时数据服务。目前每日新增的曝光日志达到几亿条记录,再细拆到AB实验更细维度时,数据量则多达上百亿记录,多维数据组合下的聚合查询要求秒级响应时间,这样的数据量也给团队带来了不小的挑战。OLAP层的技术选型,需要满足以下几点:1:数据延迟在分钟级,查询响应时间在秒级2:标准SQL交互引擎,降低使用成本3:支持join操作,方便维度增加属性信息4:流量数据可以近似去重,但订单行要精准去重5:高吞吐,每分钟数据量在千W级记录,每天数百亿条新增记录6:前端业务较多,查询并发度不能太低通过对比开源的几款实时OLAP引擎,可以发现Doris和ClickHouse能够满足上面的需求,但是ClickHouse的并发度太低是个潜在的风险,而且ClickHouse的数据导入没有事务支持,无法实现exactly once语义,对标准SQL的支持也是有限的。所以针对以上需求Doris完全能解决我们的问题,DorisDB是一个性能非常高的分布式、面向交互式查询的分布式数据库,非常的强大,随着互联网发展,数据量会越来越大,实时查询需求也会要求越来越高,DorisDB人才需求也会越来越大,越早掌握DorisDB,以后就会有更大的机遇。本课程基于真实热门的互联网电商业务场景为案例讲解,具体分析指标包含:AB版本分析,下砖分析,营销分析,订单分析,终端分析等,能承载海量数据的实时分析,数据分析涵盖全端(PC、移动、小程序)应用。整个课程,会带大家实践一个完整系统,大家可以根据自己的公司业务修改,既可以用到项目中去,价值是非常高的。本课程包含的技术:开发工具为:IDEA、WebStormFlink1.9.0DorisDBHadoop2.7.5Hbase2.2.6Kafka2.1.0Hive2.2.0HDFS、MapReduceFlume、ZookeeperBinlog、Canal、MySQLSpringBoot2.0.8.RELEASESpringCloud Finchley.SR2Vue.js、Nodejs、Highcharts、ElementUILinux Shell编程等课程亮点:1.与企业接轨、真实工业界产品2.DorisDB高性能分布式数据库3.大数据热门技术Flink4.支持ABtest版本实时监控分析5.支持下砖分析6.数据分析涵盖全端(PC、移动、小程序)应用7.主流微服务后端系统8.天级别与小时级别多时间方位分析9.数据库实时同步解决方案10.涵盖主流前端技术VUE+jQuery+Ajax+NodeJS+ElementUI11.集成SpringCloud实现统一整合方案12.互联网大数据企业热门技术栈13.支持海量数据的实时分析14.支持全端实时数据分析15.全程代码实操,提供全部代码和资料16.提供答疑和提供企业技术方案咨询企业一线架构师讲授,代码在老师的指导下企业可以复用,提供企业解决方案。  版权归作者所有,盗版将进行法律维权。 
在这个科技高速发展的时代,经历了PC时代几乎人手一台电脑,随之衍生出站长这个概念;移动互联网时代几乎人手一部智能手机,智能手机一般都会安装很多应用,目前应用呈爆发式的增长;随着产业的不断深入发展,小程序的发展也日益壮大,应用涵盖各个领域;如今一个公司就可能有多个软件应用,对于软件开发商来说,急需一套分析系统帮助软件运营,如果单独开发一个分析系统去针对一个软件进行分析的话,成本会非常的大,这个成本包含开发成本以及以后的维护成本。为了解决了上述的问题,我们开发出了一套云产品:亿级动态数据统计分析系统,本系统可以支持所有的终端  (Web端、移动端、小程序端等 )数据统计,只要简单的使用sdk就可以接入我们的系统,软件开发商可以很轻松的对软件使用的情况进行监控,及时辅助公司对该软件的运营。该产品历经2年的实践,商业价值极高。本套案例是完全基于真实的产品进行开发和讲解的,同时对架构进行全面的升级,采用了全新的 Flink 架构+Node.js+Vue.js等,完全符合目前企业级的使用标准。对于本套课程在企业级应用的问题,可以提供全面的指导。Flink作为第四代大数据计算引擎,越来越多的企业在往Flink转换。Flink在功能性、容错性、性能方面都远远超过其他计算框架,兼顾高吞吐和低延时。Flink能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能。也就是说同时支持流处理和批处理。Flink将流处理和批处理统一起来,也就是说作为流处理看待时输入数据流是无界的;批处理被作为一种特殊的流处理,只是它的输入数据流被定义为有界的。Flink技术特点1. 流处理特性支持高吞吐、低延迟、高性能的流处理支持带有事件时间的窗口(Window)操作支持有状态计算的Exactly-once语义支持高度灵活的窗口(Window)操作,支持基于time、count、session,以及data-driven的窗口操作支持具有Backpressure功能的持续流模型支持基于轻量级分布式快照(Snapshot)实现的容错一个运行时同时支持Batch on Streaming处理和Streaming处理Flink在JVM内部实现了自己的内存管理支持迭代计算支持程序自动优化:避免特定情况下Shuffle、排序等昂贵操作,中间结果有必要进行缓存2. API支持对Streaming数据类应用,提供DataStream API对批处理类应用,提供DataSet API(支持Java/Scala)3. Libraries支持支持机器学习(FlinkML)支持图分析(Gelly)支持关系数据处理(Table)支持复杂事件处理(CEP)4. 整合支持支持Flink on YARN支持HDFS支持来自Kafka的输入数据支持Apache HBase支持Hadoop程序支持Tachyon支持ElasticSearch支持RabbitMQ支持Apache Storm支持S3支持XtreemFS课程所涵盖的知识点包括:Flink、 Node.js、 Vue.js、 Kafka、Flume、Spring、SpringMVC、Dubbo、HDFS、Hbase、Highcharts等等  企业一线架构师讲授,代码在老师指导下可以复用,提供企业解决方案。  版权归作者所有,盗版将进行法律维权。   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值