Leetcode: Longest Increasing Path in a Matrix



Given an integer matrix, find the length of the longest increasing path.

From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).

Example 1:

nums = [
  [9,9,4],
  [6,6,8],
  [2,1,1]
]

Return 4
The longest increasing path is [1, 2, 6, 9].

Example 2:

nums = [
  [3,4,5],
  [3,2,6],
  [2,2,1]
]

Return 4
The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

比较简单,DFS+DP。

class Solution {
public:
    int longestIncreasingPath(vector<vector<int>>& matrix) {
        if (matrix.empty() || matrix[0].empty()) {
            return 0;
        }
        
        int longestPath = 0;
        int rows = matrix.size();
        int cols = matrix[0].size();
        vector<vector<int>> lip(rows, vector<int>(cols));
        for (int i = 0; i < rows; ++i) {
            for (int j = 0; j < cols; ++j) {
                if (lip[i][j] == 0) {
                    lip[i][j] = calculateIncreasingPath(matrix, lip, i, j);
                }
                longestPath = max(longestPath, lip[i][j]);
            }
        }
        
        return longestPath;
    }
    
    int calculateIncreasingPath(vector<vector<int>>& matrix, vector<vector<int>>& lip, int i, int j) {
        if (lip[i][j] != 0) {
            return lip[i][j];
        }
        
        lip[i][j] = 1;
        if (i > 0 && matrix[i][j] > matrix[i-1][j]) {
            lip[i][j] = max(lip[i][j], calculateIncreasingPath(matrix, lip, i - 1, j) + 1);
        }
        if (i < matrix.size() - 1 && matrix[i][j] > matrix[i+1][j]) {
            lip[i][j] = max(lip[i][j], calculateIncreasingPath(matrix, lip, i + 1, j) + 1);
        }
        if (j > 0 && matrix[i][j] > matrix[i][j-1]) {
            lip[i][j] = max(lip[i][j], calculateIncreasingPath(matrix, lip, i, j - 1) + 1);
        }
        if (j < matrix[0].size() - 1 && matrix[i][j] > matrix[i][j+1]) {
            lip[i][j] = max(lip[i][j], calculateIncreasingPath(matrix, lip, i, j + 1) + 1);
        }
        
        return lip[i][j];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值