Given an integer matrix, find the length of the longest increasing path.
From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).
Example 1:
nums = [ [9,9,4], [6,6,8], [2,1,1] ]
Return 4
The longest increasing path is [1, 2, 6, 9]
.
Example 2:
nums = [ [3,4,5], [3,2,6], [2,2,1] ]
Return 4
The longest increasing path is [3, 4, 5, 6]
. Moving diagonally is not allowed.
比较简单,DFS+DP。
class Solution {
public:
int longestIncreasingPath(vector<vector<int>>& matrix) {
if (matrix.empty() || matrix[0].empty()) {
return 0;
}
int longestPath = 0;
int rows = matrix.size();
int cols = matrix[0].size();
vector<vector<int>> lip(rows, vector<int>(cols));
for (int i = 0; i < rows; ++i) {
for (int j = 0; j < cols; ++j) {
if (lip[i][j] == 0) {
lip[i][j] = calculateIncreasingPath(matrix, lip, i, j);
}
longestPath = max(longestPath, lip[i][j]);
}
}
return longestPath;
}
int calculateIncreasingPath(vector<vector<int>>& matrix, vector<vector<int>>& lip, int i, int j) {
if (lip[i][j] != 0) {
return lip[i][j];
}
lip[i][j] = 1;
if (i > 0 && matrix[i][j] > matrix[i-1][j]) {
lip[i][j] = max(lip[i][j], calculateIncreasingPath(matrix, lip, i - 1, j) + 1);
}
if (i < matrix.size() - 1 && matrix[i][j] > matrix[i+1][j]) {
lip[i][j] = max(lip[i][j], calculateIncreasingPath(matrix, lip, i + 1, j) + 1);
}
if (j > 0 && matrix[i][j] > matrix[i][j-1]) {
lip[i][j] = max(lip[i][j], calculateIncreasingPath(matrix, lip, i, j - 1) + 1);
}
if (j < matrix[0].size() - 1 && matrix[i][j] > matrix[i][j+1]) {
lip[i][j] = max(lip[i][j], calculateIncreasingPath(matrix, lip, i, j + 1) + 1);
}
return lip[i][j];
}
};