对似然函数取对数可以将乘积关系变为加法简化计算的说明

具体来说,当我们处理多个独立样本的情况下,整个数据集的似然函数通常是单个样本似然的乘积:
L ( θ ∣ X ) = P ( X ∣ θ ) = P ( x 1 ∣ θ ) ⋅ P ( x 2 ∣ θ ) ⋅ ⋯ ⋅ P ( x n ∣ θ ) L(\theta | X) = P(X | \theta) = P(x_1 | \theta) \cdot P(x_2 | \theta) \cdot \dots \cdot P(x_n | \theta) L(θX)=P(Xθ)=P(x1θ)P(x2θ)P(xnθ)

因为这些样本是独立的,所以每个样本的似然值可以直接相乘。但在实际计算中,直接处理乘积往往会带来非常小的数值或者数值不稳定性问题。而且对于复杂的分布,求解最大化乘积的函数也非常困难。所以为了简化计算,通常对似然函数取对数,称为对数似然函数
ln ⁡ L ( θ ∣ X ) = ln ⁡ ( P ( x 1 ∣ θ ) ⋅ P ( x 2 ∣ θ ) ⋅ ⋯ ⋅ P ( x n ∣ θ ) ) \ln L(\theta | X) = \ln \left( P(x_1 | \theta) \cdot P(x_2 | \theta) \cdot \dots \cdot P(x_n | \theta) \right) lnL(θX)=ln(P(x1θ)P(x2θ)P(xnθ))

利用对数的性质:
ln ⁡ ( a ⋅ b ⋅ c ) = ln ⁡ a + ln ⁡ b + ln ⁡ c \ln (a \cdot b \cdot c) = \ln a + \ln b + \ln c ln(abc)=lna+lnb+lnc

这样,似然函数中的乘积关系就变成了求和的关系:
ln ⁡ L ( θ ∣ X ) = ln ⁡ P ( x 1 ∣ θ ) + ln ⁡ P ( x 2 ∣ θ ) + ⋯ + ln ⁡ P ( x n ∣ θ ) \ln L(\theta | X) = \ln P(x_1 | \theta) + \ln P(x_2 | \theta) + \dots + \ln P(x_n | \theta) lnL(θX)=lnP(x1θ)+lnP(x2θ)++lnP(xnθ)

这样不仅简化了计算,还能帮助我们在极大似然估计过程中更方便地对参数求导,从而找到参数的最优解。

总结:

  • 乘积变加法 是通过对似然函数取对数实现的,利用了对数的性质,使得多个概率的乘积变为对数概率的和。
  • 这大大简化了计算过程,并避免了数值计算中的小数值问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值