【scikit-learn】sklearn.svm.SVR 类:支持向量机回归器

sklearn.svm.SVR(支持向量机回归器)

SVR(Support Vector Regression)是 sklearn.svm 提供的 支持向量机(SVM)回归模型,适用于 非线性回归任务,尤其在 小数据集和高维数据 中表现良好。


1. SVR 作用

  • 用于回归任务(如 房价预测、股票趋势分析)。
  • 支持线性和非线性回归(核方法)
  • 适用于小数据集,高维数据(如文本回归)

2. SVR 代码示例

(1) 训练 SVR 回归器

from sklearn.svm import SVR
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split

# 生成回归数据
X, y = make_regression(n_samples=100, n_features=1, noise=10, random_state=42)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练 SVM 回归模型
model = SVR(kernel="rbf", C=1.0, epsilon=0.1)
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 计算 R²
r2 = model.score(X_test, y_test)
print("SVM 回归器 R²:", r2)

解释

  • kernel="rbf":使用 径向基函数(RBF)核,适用于非线性数据。
  • C=1.0:正则化参数,值越大,模型对误差更敏感(易过拟合)。
  • epsilon=0.1:允许误差范围,值越大,回归曲线更平滑。

3. SVR 主要参数

SVR(kernel="rbf", C=1.0, epsilon=0.1, gamma="scale", degree=3)
参数说明
kernel核函数类型"linear""poly""rbf""sigmoid"
C正则化参数(默认 1.0,值大则更关注误差,易过拟合)
epsilon允许误差范围(默认 0.1,值越大,模型越宽松)
gamma核函数参数(默认 "scale",值越大影响越局部)
degree多项式核的阶数(仅在 kernel="poly" 时有效)

4. epsilon 对回归效果的影响

epsilon_values = [0.01, 0.1, 0.5]
for eps in epsilon_values:
    model = SVR(kernel="rbf", C=1.0, epsilon=eps)
    model.fit(X_train, y_train)
    print(f"epsilon={eps}, 测试集 R²={model.score(X_test, y_test)}")

解释

  • epsilon 小(如 0.01)时,拟合严格,可能过拟合
  • epsilon 大(如 0.5)时,回归曲线更平滑,可能欠拟合

5. 计算模型性能

from sklearn.metrics import mean_squared_error, r2_score

mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print("均方误差 MSE:", mse)
print("决定系数 R²:", r2)

解释

  • MSE(均方误差):值越小,拟合效果越好。
  • R²(决定系数)1 表示完美拟合,0 表示无解释能力。

6. SVR vs. LinearSVR

模型适用情况主要区别
SVR非线性回归支持核函数(默认 RBF),计算较慢
LinearSVR线性回归计算更快,但不支持核函数

示例

from sklearn.svm import LinearSVR

linear_svr = LinearSVR(C=1.0, max_iter=1000)
linear_svr.fit(X_train, y_train)

print("SVR (RBF) 回归 R²:", model.score(X_test, y_test))
print("LinearSVR 回归 R²:", linear_svr.score(X_test, y_test))

解释

  • LinearSVR 适用于大规模数据,计算速度更快

7. C 对模型的影响

C_values = [0.1, 1, 10]
for C in C_values:
    model = SVR(kernel="rbf", C=C)
    model.fit(X_train, y_train)
    print(f"C={C}, 测试集 R²={model.score(X_test, y_test)}")

解释

  • C 小(如 0.1)时,允许误差较多,回归曲线更平滑
  • C 大(如 10)时,对误差更敏感,可能过拟合

8. 适用场景

  • 回归任务(如 房价预测、能源消耗预测)。
  • 适用于小数据集,高维数据(如文本回归)
  • LinearSVR 不能拟合复杂数据时,SVR 可能更优

9. 结论

  • SVR 适用于回归任务,支持核方法进行线性和非线性回归,适用于小规模数据,比 LinearSVR 更适合复杂数据,可以 调整 Cepsilon 控制模型复杂度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值