整数幂快速取模求法

本文介绍了一种高效的整数幂快速取模算法,通过将指数按二进制展开并利用模运算的性质,有效地减少了计算过程中的数值规模,避免了因数值过大导致的计算困难。
部署运行你感兴趣的模型镜像
整数幂快速取模求法
分类: 编程之美   539人阅读  评论(0)  收藏  举报

由于一个整数的指数结果很大,可能远远超出计算机处理范围,故必须简化计算方式.这里采用快速取模方法

模的性质:(a*b)mod m = ((a mod m)*(b mod m))mod m,

 

整数幂的快速求法原理如下:

如求 m^n,则只要把n按二进制展开:如 n = a0*2^0+a1*2^1+.....+ak*2^k;

 

 快速幂求法如下:

 

[cpp]  view plain copy
  1. long long FastPow(int m,int n)  
  2. {  
  3.   long long res = 1;  
  4.   for( ; n ; n>>1 )  
  5.   {  
  6.      if(n & 1)  
  7.         res *= m;  
  8.      m *= m ;  
  9.   }  
  10.   
  11.   return res;  
  12.   
  13. }  

 

整数幂快速取模求法 与上面类似:

代码如下:

 

 

[cpp]  view plain copy
  1. long long PowerMod(long long a, int b, int k)  
  2. {   //(a^b )%k  
  3.     long long tmp = a, ret = 1;  
  4.     for(; b ; b>>1 )  
  5.     {  
  6.         if (b & 1)  
  7.             ret = (ret * tmp) % k;  //只是每步运算的时候都取模  
  8.         tmp = (tmp * tmp) % k;  
  9.     }  
  10.     return ret;  
  11. }  

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值