Python 中字符与数字间转换函数 int(x [,base ]) 将x转换为一个整数 long(x [,base ]) 将x转换为一个长整数 float(x ) 将x转换到一个浮点数 complex(real [,imag ]) 创建一个复数 str(x ) 将对象 x 转换为字符串
Python 获取当前文件夹下所有文件名 from : http://www.cnblogs.com/strongYaYa/p/7200357.htmlos 模块下有两个函数:os.walk()os.listdir() # -*- coding: utf-8 -*- 2 3 import os 4 5 def file_name(file_dir):
Python open()文件处理使用介绍 from : http://www.jb51.net/article/58002.htm1. open()语法open(file[, mode[, buffering[, encoding[, errors[, newline[, closefd=True]]]]]])open函数有很多的参数,常用的是file,mode和encodingfile文件位置,需要加引号
python 文件操作 #open(路径+文件名,读写模式)from:http://hi.baidu.com/zzfxz/blog/item/1c4d73cb4aa2c814bf09e613.htmlf=open('/tmp/hello','w')#读写模式:r只读,r+读写,w新建(会覆盖原有文件),a追加,b二进制文件.常用模式读写模式的类型有:rU 或 Ua 以读方式打开
Ubuntu 安装nvidia显卡驱动 sudo chmod +x NVIDIA-Linux-x86_64-375.66.run先按Ctrl + Alt + F1到控制台,关闭当前图形环境 $sudo service lightdm stop再安装驱动程序 $sudo sh NVIDIA-Linux-x86_64-xxx.run(该文件必须在当前目录下)最后重新启动图形环境 $sudo servic
caffe 的matlab接口配置 参考博文:http://blog.csdn.net/thystar/article/details/50720691caffe的Matlab中只支持gcc-4.7,但是ubuntu14.04默认安装的是gcc-4.8。选择安装gcc-4.7并降级,步骤如下:下载并安装gcc-4.7和g++-4.71 sudo apt-get install gcc-4.72 sudo apt-ge
Ubuntu14.04安装Matlab R2013b 下载MatlabMathworks.Matlab.R2013b.Linux.rar 解压得到:挂载iso需新建matlab_iso文件夹: 首先进入解压之后的镜像文件夹,接着执行以下命令$ sudo mkdir ~/matlab_iso$ sudo mount -o loop R2013b_UNIX.iso ~/matlab_iso 开
python相关知识点 1、os.path在不同的环境中设置文件的路径时作用非常大:常用方法作用os.path.dirname(__file__)返回当前python执行脚本的执行路径(看下面的例子),这里__file__为固定参数os.path.abspath(file)返回一个文件在当前环境中的绝对路径,这里file 一参数os.path.join(ba
Linux下ln链接命令详解 原文地址:http://www.cnblogs.com/lanxuezaipiao/archive/2012/10/21/2732871.html ln是linux中又一个非常重要命令,它的功能是为某一个文件在另外一个位置建立一个不同的链接,这个命令最常用的参数是-s,具体用法是:ln –s 源文件 目标文件。 当我们需要在不同的目录,用到相同的文件时,我们不需要在每一个需要的目录下都放
matlab读取文件夹里所有文件的文件名 fileFolder=fullfile('F:\matlab\releasedata\images\plane');%文件夹名planedirOutput=dir(fullfile(fileFolder,'*'));%如果存在不同类型的文件,用‘*’读取所有,如果读取特定类型文件,'.'加上文件类型,例如用‘.jpg’fileNames={dirOutput.name}';
Faster R-CNN论文笔记 原文:http://www.92to.com/bangong/2016/10-30/12048568.html在介绍Faster R-CNN之前,先来介绍一些前验知识,为Faster R-CNN做铺垫。一、基于Region Proposal(候选区域)的深度学习目标检测算法Region Proposal(候选区域),就是预先找出图中目标可能出现的位置,通过利用图像中的纹理、边缘、颜
为何全色影像分辨率高于多光谱影像分辨率 原文地址:https://sanwen.net/a/rdfbrqo.html在进行遥感影像处理之前一般都会进行影像融合处理,但是为什么要进行这步处理呢?这是因为同一份遥感数据里相对来说全色影像分辨率要高,但它无法显示地物色彩,美观度不够,而多光谱影像可以给不同波段赋予RGB颜色来得到彩色影像,但它分辨率低,不符合大家对分辨率的需求。为了获得一张高分辨率的彩色影像,我们便
全色遥感影像 颜色是对人眼而言.全色是指全部可见光波段0.38~0.76um,全色图像为这一波段范围的混合图像,一般为黑白图像。全色波段,一般使用0.5微米到0.75微米左右的单波段,即从绿色往后的可见光波段(为防止大气散射对影像质量的影响,大多将蓝色光滤去)。全色遥感影象也就是对地物辐射中全色波段的影象摄取,因为是单波段,在图上显示是灰度图片。全色遥感影象一般空间分辨率高,但无法显示地物色彩。 多波段
生成分类标签文件.txt caffe对于训练数据格式,支持:lmdb、h5py……,其中lmdb数据格式常用于单标签数据,像分类等,经常使用lmdb的数据格式。对于回归等问题,或者多标签数据,一般使用h5py数据的格式。本文介绍两种生成caffe特定格式文件所需的标签文件train.txt和val.txt的方法。1、用matlab语言编写做的标签文件如下:(无打乱)image/Audi/00
Fine-tuning a Pretrained Network for Style Recognition 本文来源:https://github.com/BVLC/caffe/blob/master/examples/02-fine-tuning.ipynb由于数据资源和计算资源的限制,我们往往很难从头开始训练神经网络。现在比较常用的解决方案是迁移在大规模数据集上训练好的网络的权值来精调我们自己的网络。(这种方法要求两种数据集有一定的相似性)这个方法的优点就是,提前训练好的网络是在一个非常大的图像
Python中的join()函数的用法 原文地址:http://www.cnblogs.com/jsplyy/p/5634640.html函数:string.join()Python中有join()和os.path.join()两个函数,具体作用如下: join(): 连接字符串数组。将字符串、元组、列表中的元素以指定的字符(分隔符)连接生成一个新的字符串 os.path.join(): 将多个路
epoch、 iteration和batchsize 深度学习中,训练网络经常看到epoch、 iteration和batchsize这三个参数,下面简要介绍一下1、epoch:一个epoch代表一次循环,即将训练集中的全部样本都训练一次;2、iteration:1个iteration等于使用batchsize个样本训练一次(补充:使用caffe时,test_iter*batchsize等于验证集样本个数);3、batchsize:批
白化whitening 原文地址:http://blog.csdn.net/hjimce/article/details/50864602一、相关理论 白化这个词,可能在深度学习领域比较常遇到,挺起来就是高大上的名词,然而其实白化是一个比PCA稍微高级一点的算法而已,所以如果熟悉PCA,那么其实会发现这是一个非常简单的算法。 白化的目的是去除输入数据的冗余信息。假设训练数据是图
Python模块import 相对导入:在不指明 package 名的情况下导入自己这个 package 的模块,比如一个 package 下有 a.py 和 b.py 两个文件,在 a.py 里from . import b 即是相对导入 b.py。绝对导入:指明顶层 package 名。比如 import a,Python 会在 sys.path 里寻找所有名为a 的顶层模块。from __future__
numpy数组 NumPy数组NumPy数组是一个多维数组对象,称为ndarray。其由两部分组成:实际的数据描述这些数据的元数据大部分操作仅针对于元数据,而不改变底层实际的数据。关于NumPy数组有几点必需了解的:NumPy数组的下标从0开始。同一个NumPy数组中所有元素的类型必须是相同的。NumPy数组属性在详细介绍NumPy数组之前。先详细介绍下NumPy数组的基本属性