PyTorch中的CUDA操作

本文详细介绍了PyTorch中CUDA的相关操作,包括查看GPU设备、在CPU和GPU上创建Tensor、CUDA Streams的使用、固定缓冲区的概念及自动设备感知,提供了模型迁移至GPU的示例。
摘要由CSDN通过智能技术生成

🚀 优质资源分享 🚀

学习路线指引(点击解锁) 知识定位 人群定位
🧡 Python实战微信订餐小程序 🧡 进阶级 本课程是python flask+微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一个全栈订餐系统。
💛Python量化交易实战💛 入门级 手把手带你打造一个易扩展、更安全、效率更高的量化交易系统

CUDA(Compute Unified Device Architecture)是NVIDIA推出的异构计算平台,PyTorch中有专门的模块torch.cuda来设置和运行CUDA相关操作。本地安装环境为Windows10,Python3.7.8和CUDA 11.6,安装PyTorch最新稳定版本1.12.1如下:

pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116

一.常见CPU和GPU操作命令

1.查看PyTorch版本

print(torch.__version__)
1.12.1+cu116

2.查看GPU设备是否可用

print(torch.cuda.is_available())
True

3.PyTorch默认使用设备是CPU

print("default device: {}".format(torch.Tensor([4,5,6]).device))
default device: cpu

4.查看所有可用的cpu设备的数量

print("available cpu devices: {}".format(torch.cuda.os.cpu_count()))
available cpu devices: 20


这里CPU设备数量指的是逻辑处理器的数量。
5.查看所有可用的gpu设备的数量

print("available gpu devices: {}".format(torch.cuda.device_count()))
available gpu devices: 1

6.获取gpu设备的名称

print("gpu device name: {}".format(torch.cuda.get_device_name(torch.device("cuda
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值