redis缓存和mysql数据库同步

解决方案

一、对强一致要求比较高的,应采用实时同步方案,即查询缓存查询不到再从DB查询,保存到缓存;更新缓存时,先更新数据库,再将缓存的设置过期(建议不要去更新缓存内容,直接设置缓存过期)。

二、对于并发程度较高的,可采用异步队列的方式同步,可采用kafka等消息中间件处理消息生产和消费。

三、使用阿里的同步工具canal,canal实现方式是模拟mysql slave和master的同步机制,监控DB bitlog的日志更新来触发缓存的更新,此种方法可以解放程序员双手,减少工作量,但在使用时有些局限性。

四、采用UDF自定义函数的方式,面对mysql的API进行编程,利用触发器进行缓存同步,但UDF主要是c/c++语言实现,学习成本高。

实时同步

spring3+提供了注解的方式进行缓存编程

@Cacheable(key = "caches[0].name + T(String).valueOf(#userId)",unless = "#result eq null")
@CachePut(key = "caches[0].name + T(String).valueOf(#user.userId)")
@CacheEvict(key = "caches[0].name + T(String).valueOf(#userId)" )
@Caching(evict = {@CacheEvict(key = "caches[0].name + T(String).valueOf(#userId)" ),
@CacheEvict(key = "caches[0].name + #result.name" )})
@Cacheable:查询时使用,注意Long类型需转换为Sting类型,否则会抛异常
@CachePut:更新时使用,使用此注解,一定会从DB上查询数据
@CacheEvict:删除时使用;
@Caching:组合用法      具体注解的使用可参考官网

注意:注解方式虽然能使我们的代码简洁,但是注解方式有局限性:对key的获取,以及嵌套使用时注解无效,如下所示
复制代码
public class User {
    private Long userId;
    private String name;
    private Integer age;
    private String sex;
    private String addr;
  //get set ..... }
复制代码

service接口

1
2
3
4
5
6
7
public  interface  UserService {
     User getUser(Long userId);
     User updateUser(User user);
     User getUserByName(String name);
     int  insertUser(User user);
     User  delete (Long userId);
}<br> //实现类<br>//假设有需求是由name查询user的,一般我们是先由name->id,再由id->user,这样会减少redis缓存的冗余信息
@Service(value = "userSerivceImpl")
@CacheConfig(cacheNames = "user")
public class UserServiceImpl implements UserService {
private static Logger log = LoggerFactory.getLogger(UserServiceImpl.class);
@Autowired
UserMapper userMapper;

@Cacheable(key = "caches[0].name + T(String).valueOf(#userId)",unless = "#result eq null")
public User getUser(Long userId) {
User user = userMapper.selectByPrimaryKey(userId);
return user;
}
@Cacheable(key = "caches[0].name + #name")
public String getIdByName(String name){
Long userId = userMapper.getIdByName(name);
return String.valueOf(userId);
}

//使用getUserByName方式调用getIdByName 和getUser方法来实现查询,但是如果用此方式在controller中直接调用
//getUserByName方法,缓存效果是不起作用的,必须是直接调用getIdByName和getUser方法才能起作用
    public User getUserByName(String name) {
//通过name 查询到主键 再由主键查询实体
return getUser(Long.valueOf(getIdByName(name)));
}

非注解方式实现

1.先定义一个RedisCacheConfig类用于生成RedisTemplate和对CacheManager的管理

复制代码
@Configuration
public class RedisCacheConfig  extends CachingConfigurerSupport {

    /*定义缓存数据 key 生成策略的bean
     *包名+类名+方法名+所有参数
    */
    @Bean
    public KeyGenerator keyGenerator() {
        return new KeyGenerator() {
            @Override
            public Object generate(Object target, Method method, Object... params) {
                StringBuilder sb = new StringBuilder();
                sb.append(target.getClass().getName());
                sb.append(method.getName());
                for (Object obj : params) {
                    sb.append(obj.toString());
                }
                return sb.toString();
            }
        };
    }

     //@Bean
     public CacheManager cacheManager(
             @SuppressWarnings("rawtypes") RedisTemplate redisTemplate) {
         //RedisCacheManager cacheManager = new RedisCacheManager(redisTemplate);
           //cacheManager.setDefaultExpiration(60);//设置缓存保留时间(seconds)
         return cacheManager;
     }

    //1.项目启动时此方法先被注册成bean被spring管理
    @Bean
    public StringRedisTemplate stringRedisTemplate(RedisConnectionFactory factory) {

        StringRedisTemplate template = new StringRedisTemplate(factory);
        Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
        ObjectMapper om = new ObjectMapper();
        om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        jackson2JsonRedisSerializer.setObjectMapper(om);
        template.setValueSerializer(jackson2JsonRedisSerializer);
        template.afterPropertiesSet();
        return template;
    }

    @Bean
    public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory connectionFactory) {
        RedisTemplate<String, Object> template = new RedisTemplate<>();
        template.setConnectionFactory(connectionFactory);

        //使用Jackson2JsonRedisSerializer来序列化和反序列化redis的value值
        Jackson2JsonRedisSerializer serializer = new Jackson2JsonRedisSerializer(Object.class);

        System.out.println("==============obj:"+Object.class.getName());
        ObjectMapper mapper = new ObjectMapper();
        mapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        mapper.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        serializer.setObjectMapper(mapper);

        template.setValueSerializer(serializer);
        //使用StringRedisSerializer来序列化和反序列化redis的key值
        template.setKeySerializer(new StringRedisSerializer());
        template.afterPropertiesSet();
        return template;
    }
}
复制代码

2.定义一个redisUtil类用于存取缓存值

复制代码
@Component
public class RedisCacheUtil {

    @Autowired
    private StringRedisTemplate stringRedisTemplate;
    @Autowired
    private RedisTemplate<String, Object> redisTemplate;

    /**
     * 存储字符串
     * @param key string类型的key
     * @param value String类型的value
     */
    public void set(String key, String value) {
        stringRedisTemplate.opsForValue().set(key, value);
    }

    /**
     * 存储对象
     * @param key String类型的key
     * @param value Object类型的value
     */
    public void set(String key, Object value) {
        redisTemplate.opsForValue().set(key, value);
    }

    /**
     * 存储对象
     * @param key String类型的key
     * @param value Object类型的value
     */
    public void set(String key, Object value,Long timeOut) {
        redisTemplate.opsForValue().set(key, value,timeOut, TimeUnit.SECONDS);
    }

    /**
     * 根据key获取字符串数据
     * @param key
     * @return
     */
    public String getValue(String key) {
        return stringRedisTemplate.opsForValue().get(key);
    }

//    public Object getValue(String key) {
//        return redisTemplate.opsForValue().get(key);
//    }
    /**
     * 根据key获取对象
     * @param key
     * @return
     */
    public Object getValueOfObject(String key) {
        return redisTemplate.opsForValue().get(key);
    }
    /**
     * 根据key删除缓存信息
     * @param key
     */
    public void delete(String key) {
        redisTemplate.delete(key);
    }
    /**
     * 查询key是否存在
     * @param key
     * @return
     */
    @SuppressWarnings("unchecked")
    public boolean exists(String key) {
        return redisTemplate.hasKey(key);
    }
}
复制代码

3.实现类

复制代码
/**
 * Created by yexin on 2017/9/8.
 *
 * 在Impl基础上+ 防止缓存雪崩和缓存穿透功能
 */
@Service(value = "userServiceImpl4")
public class UserServiceImpl4 implements UserService {

    @Autowired
    UserMapper userMapper;

    @Autowired
    RedisCacheUtil redisCacheUtil;

    @Value("${timeOut}")
    private long timeOut;

    @Override
    public User getUser(Long userId) {

        String key = "user" + userId;
        User user = (User) redisCacheUtil.getValueOfObject(key);
        String keySign = key + "_sign";
        String valueSign = redisCacheUtil.getValue(keySign);
        if(user == null){//防止第一次查询时返回时空结果
            //防止缓存穿透
            if(redisCacheUtil.exists(key)){
                return  null;
            }
            user = userMapper.selectByPrimaryKey(userId);

            redisCacheUtil.set(key,user);
            redisCacheUtil.set(keySign,"1",timeOut *(new Random().nextInt(10) + 1));
//            redisCacheUtil.set(keySign,"1",0L);  //过期时间不能设置为0,必须比0大的数
            return user;
        }

        if(valueSign != null){
            return user;
        }else {
            //设置标记的实效时间
            Long tt = timeOut * (new Random().nextInt(10) + 1);
            System.out.println("tt:"+tt);
            redisCacheUtil.set(keySign,"1",tt);
            //异步处理缓存更新  应对与高并发的情况,会产生脏读的情况
            ThreadPoolUtil.getExecutorService().execute(new Runnable(){
                public void run() { //
                    System.out.println("-----执行异步操作-----");
                    User user1 = userMapper.selectByPrimaryKey(userId);
                    redisCacheUtil.set(key,user1);
                }
            });

//            new Thread(){
//                public void run() { //应对与高并发的情况,会产生脏读的情况
//                    System.out.println("-----执行异步操作-----");
//                    User user1 = userMapper.selectByPrimaryKey(userId);
//                    redisCacheUtil.set(key,user1);
//                }
//            }.start();
        }
        return user;
    }
}
复制代码

异步实现

异步实现通过kafka作为消息队列实现,异步只针对更新操作,查询无需异步,实现类如下

1.pom文件需依赖

<dependency>
     <groupId>org.springframework.cloud</groupId>
     <artifactId>spring-cloud-starter-stream-kafka</artifactId>
</dependency>

2.生产着代码

复制代码
@EnableBinding(Source.class)
public class SendService {
    @Autowired
    private Source source;
    public void sendMessage(String msg) {
        try{
            source.output().send(MessageBuilder.withPayload(msg).build());
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
//接受的是一个实体类,具体配置在application.yml
    public void sendMessage(TransMsg msg) {
        try {
            //MessageBuilder.withPayload(msg).setHeader(KafkaHeaders.TOPIC,"111111").build();
            source.output().send(MessageBuilder.withPayload(msg).build());
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}
复制代码

3.消费者代码

复制代码
@EnableBinding(Sink.class)
public class MsgSink {
    @Resource(name = "userSerivceImpl3")
    UserService userService;
    @StreamListener(Sink.INPUT)
    public void process(TransMsg<?> msg) throws NoSuchMethodException, InvocationTargetException, IllegalAccessException, ClassNotFoundException {
        System.out.println("sink......"+msg);
        System.out.println("opt db strat ----");
        userService.updateUser((User) msg.getParams());
        System.out.println("执行db结束------");
    }
}
复制代码

4.application.yml配置

复制代码
spring:
  application:
    name: demo-provider
  redis:
    database: 0
    host: 192.168.252.128
    #host: localhost
    port: 6379
    password:
    pool:
      max-active: 50
      max-wait: -1
      max-idle: 50
    timeout: 0
#kafka
  cloud:
      stream:
        kafka:
          binder:
            brokers: 192.168.252.128:9092
            zk-nodes: 192.168.252.128:2181
            minPartitionCount: 1
            autoCreateTopics: true
            autoAddPartitions: true
        bindings:
          input:
            destination: topic-02
#            content-type: application/json
            content-type: application/x-java-object   #此种类型配置在消费端接受到的为一个实体类
            group: t1
            consumer:
              concurrency: 1
              partitioned: false
          output:
            destination: topic-02
            content-type: application/x-java-object             
            producer:
              partitionCount: 1
        instance-count: 1
        instance-index: 0
复制代码

5.实现类

复制代码
@Service(value = "userServiceImpl2")
public class UserServiceImpl2  implements UserService{
    @Autowired
    UserMapper userMapper;
    @Autowired
    RedisCacheUtil redisCacheUtil;
    private static Logger log = LoggerFactory.getLogger(UserServiceImpl.class);
    @Autowired
    SendService sendService;
    public User updateUser(User user) {
        System.out.println("   impl2   active   ");
        String key = "user"+ user.getUserId();
        System.out.println("key:"+key);
        //是否存在key
        if(!redisCacheUtil.exists(key)){
         return userMapper.updateByPrimaryKeySelective(user) == 1 ? user : null;
        }
        /*  更新key对应的value
            更新队列
         */
        User user1 = (User)redisCacheUtil.getValueOfObject(key);
        try {
            redisCacheUtil.set(key,user);
            TransMsg<User> msg = new TransMsg<User>(key,user,this.getClass().getName(),"updateUser",user);
            sendService.sendMessage(msg);

        }catch (Exception e){
            redisCacheUtil.set(key,user1);
        }
        return user;
    }
}
复制代码

注意:kafka与zookeeper的配置在此不介绍

canal实现方式

先要安装canal,配置canal的example文件等,配置暂不介绍

复制代码
package org.example.canal;

import com.alibaba.fastjson.JSONObject;
import com.alibaba.otter.canal.client.CanalConnector;
import com.alibaba.otter.canal.client.CanalConnectors;
import com.alibaba.otter.canal.common.utils.AddressUtils;
import com.alibaba.otter.canal.protocol.Message;
import com.alibaba.otter.canal.protocol.CanalEntry.Column;
import com.alibaba.otter.canal.protocol.CanalEntry.Entry;
import com.alibaba.otter.canal.protocol.CanalEntry.EntryType;
import com.alibaba.otter.canal.protocol.CanalEntry.EventType;
import com.alibaba.otter.canal.protocol.CanalEntry.RowChange;
import com.alibaba.otter.canal.protocol.CanalEntry.RowData;
import org.example.canal.util.RedisUtil;

import java.net.InetSocketAddress;
import java.util.List;

public class CanalClient {

    public static void main(String[] args) {
        // 创建链接
        CanalConnector connector = CanalConnectors.newSingleConnector(new InetSocketAddress(AddressUtils.getHostIp(),
                11111), "example", "", "");
        int batchSize = 1000;

        try {
            connector.connect();
            connector.subscribe(".*\\..*");
            connector.rollback();
            while (true) {
                Message message = connector.getWithoutAck(batchSize); // 获取指定数量的数据
                long batchId = message.getId();
                int size = message.getEntries().size();
                if (batchId == -1 || size == 0) {
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                } else {
                    printEntry(message.getEntries());
                }
                connector.ack(batchId); // 提交确认
                // connector.rollback(batchId); // 处理失败, 回滚数据
            }
        } finally {
            connector.disconnect();
        }
    }

    private static void printEntry( List<Entry> entrys) {
        for (Entry entry : entrys) {
            if (entry.getEntryType() == EntryType.TRANSACTIONBEGIN || entry.getEntryType() == EntryType.TRANSACTIONEND) {
                continue;
            }
            RowChange rowChage = null;
            try {
                System.out.println("tablename:"+entry.getHeaderOrBuilder().getTableName());
                rowChage = RowChange.parseFrom(entry.getStoreValue());
            } catch (Exception e) {
                throw new RuntimeException("ERROR ## parser of eromanga-event has an error , data:" + entry.toString(),
                        e);
            }
            EventType eventType = rowChage.getEventType();
            System.out.println(String.format("================> binlog[%s:%s] , name[%s,%s] , eventType : %s",
                    entry.getHeader().getLogfileName(), entry.getHeader().getLogfileOffset(),
                    entry.getHeader().getSchemaName(), entry.getHeader().getTableName(),
                    eventType));

            for (RowData rowData : rowChage.getRowDatasList()) {
                if (eventType == EventType.DELETE) {
                    redisDelete(rowData.getBeforeColumnsList());
                } else if (eventType == EventType.INSERT) {
                    redisInsert(rowData.getAfterColumnsList());
                } else {
                    System.out.println("-------> before");
                    printColumn(rowData.getBeforeColumnsList());
                    System.out.println("-------> after");
                    redisUpdate(rowData.getAfterColumnsList());
                }
            }
        }
    }

    private static void printColumn( List<Column> columns) {
        for (Column column : columns) {
            System.out.println(column.getName() + " : " + column.getValue() + "    update=" + column.getUpdated());
        }
    }

    private static void redisInsert( List<Column> columns){
        JSONObject json=new JSONObject();
        for (Column column : columns) {
            json.put(column.getName(), column.getValue());
        }
        if(columns.size()>0){
            RedisUtil.stringSet("user:"+ columns.get(0).getValue(),json.toJSONString());
        }
    }

    private static  void redisUpdate( List<Column> columns){
        JSONObject json=new JSONObject();
        for (Column column : columns) {
            json.put(column.getName(), column.getValue());
        }
        if(columns.size()>0){
            RedisUtil.stringSet("user:"+ columns.get(0).getValue(),json.toJSONString());
        }
    }

    private static  void redisDelete( List<Column> columns){
        JSONObject json=new JSONObject();
        for (Column column : columns) {
            json.put(column.getName(), column.getValue());
        }
        if(columns.size()>0){
            RedisUtil.delKey("user:"+ columns.get(0).getValue());
        }
    }

}
复制代码
复制代码
package org.example.canal.util;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;
public class RedisUtil {

    // Redis服务器IP
    private static String ADDR = "192.168.252.128";
    // Redis的端口号
    private static int PORT = 6379;
    // 访问密码
    //private static String AUTH = "admin";
    // 可用连接实例的最大数目,默认值为8;
    // 如果赋值为-1,则表示不限制;如果pool已经分配了maxActive个jedis实例,则此时pool的状态为exhausted(耗尽)。
    private static int MAX_ACTIVE = 1024;
    // 控制一个pool最多有多少个状态为idle(空闲的)的jedis实例,默认值也是8。
    private static int MAX_IDLE = 200;
    // 等待可用连接的最大时间,单位毫秒,默认值为-1,表示永不超时。如果超过等待时间,则直接抛出JedisConnectionException;
    private static int MAX_WAIT = 10000;
    // 过期时间
    protected static int  expireTime = 60 * 60 *24;
    // 连接池
    protected static JedisPool pool;

    static {
        JedisPoolConfig config = new JedisPoolConfig();
        //最大连接数
        config.setMaxTotal(MAX_ACTIVE);
        //最多空闲实例
        config.setMaxIdle(MAX_IDLE);
        //超时时间
        config.setMaxWaitMillis(MAX_WAIT);
        //
        config.setTestOnBorrow(false);
        pool = new JedisPool(config, ADDR, PORT, 1000);
    }
    /**
     * 获取jedis实例
     */
    protected static synchronized Jedis getJedis() {
        Jedis jedis = null;
        try {
            jedis = pool.getResource();
        } catch (Exception e) {
            e.printStackTrace();
            if (jedis != null) {
                pool.returnBrokenResource(jedis);
            }
        }
        return jedis;
    }

    /**
     * 释放jedis资源
     * @param jedis
     * @param isBroken
     */
    protected static void closeResource(Jedis jedis, boolean isBroken) {
        try {
            if (isBroken) {
                pool.returnBrokenResource(jedis);
            } else {
                pool.returnResource(jedis);
            }
        } catch (Exception e) {

        }
    }

    /**
     * 是否存在key
     * @param key
     */
    public static boolean existKey(String key) {
        Jedis jedis = null;
        boolean isBroken = false;
        try {
            jedis = getJedis();
            jedis.select(0);
            return jedis.exists(key);
        } catch (Exception e) {
            isBroken = true;
        } finally {
            closeResource(jedis, isBroken);
        }
        return false;
    }

    /**
     * 删除key
     * @param key
     */
    public static void delKey(String key) {
        Jedis jedis = null;
        boolean isBroken = false;
        try {
            jedis = getJedis();
            jedis.select(0);
            jedis.del(key);
        } catch (Exception e) {
            isBroken = true;
        } finally {
            closeResource(jedis, isBroken);
        }
    }

    /**
     * 取得key的值
     * @param key
     */
    public static String stringGet(String key) {
        Jedis jedis = null;
        boolean isBroken = false;
        String lastVal = null;
        try {
            jedis = getJedis();
            jedis.select(0);
            lastVal = jedis.get(key);
            jedis.expire(key, expireTime);
        } catch (Exception e) {
            isBroken = true;
        } finally {
            closeResource(jedis, isBroken);
        }
        return lastVal;
    }

    /**
     * 添加string数据
     * @param key
     * @param value
     */
    public static String stringSet(String key, String value) {
        Jedis jedis = null;
        boolean isBroken = false;
        String lastVal = null;
        try {
            jedis = getJedis();
            jedis.select(0);
            lastVal = jedis.set(key, value);
            jedis.expire(key, expireTime);
        } catch (Exception e) {
            e.printStackTrace();
            isBroken = true;
        } finally {
            closeResource(jedis, isBroken);
        }
        return lastVal;
    }

    /**
     *  添加hash数据
     * @param key
     * @param field
     * @param value
     */
    public static void hashSet(String key, String field, String value) {
        boolean isBroken = false;
        Jedis jedis = null;
        try {
            jedis = getJedis();
            if (jedis != null) {
                jedis.select(0);
                jedis.hset(key, field, value);
                jedis.expire(key, expireTime);
            }
        } catch (Exception e) {
            isBroken = true;
        } finally {
            closeResource(jedis, isBroken);
        }
    }

}
复制代码

附redis关于缓存雪崩和缓存穿透,热点key

穿透

穿透:频繁查询一个不存在的数据,由于缓存不命中,每次都要查询持久层。从而失去缓存的意义。

解决办法: 持久层查询不到就缓存空结果,查询时先判断缓存中是否exists(key) ,如果有直接返回空,没有则查询后返回,

                  注意insert时需清除查询的key,否则即便DB中有值也查询不到(当然也可以设置空缓存的过期时间)

雪崩

雪崩:缓存大量失效的时候,引发大量查询数据库。
解决办法:①用锁/分布式锁或者队列串行访问

                  ②缓存失效时间均匀分布

热点key

热点key:某个key访问非常频繁,当key失效的时候有打量线程来构建缓存,导致负载增加,系统崩溃。

解决办法:

①使用锁,单机用synchronized,lock等,分布式用分布式锁。

②缓存过期时间不设置,而是设置在key对应的value里。如果检测到存的时间超过过期时间则异步更新缓存。

③在value设置一个比过期时间t0小的过期时间值t1,当t1过期的时候,延长t1并做更新缓存操作。

4设置标签缓存,标签缓存设置过期时间,标签缓存过期后,需异步地更新实际缓存  具体参照userServiceImpl4的处理方式

 

总结

一、查询redis缓存时,一般查询如果以非id方式查询,建议先由条件查询到id,再由id查询pojo

二、异步kafka在消费端接受信息后,该怎么识别处理那张表,调用哪个方法,此问题暂时还没解决

三、比较简单的redis缓存,推荐使用canal

参考文档

http://blog.csdn.net/fly_time2012/article/details/50751316

http://blog.csdn.net/kkgbn/article/details/60576477

http://www.cnblogs.com/fidelQuan/p/4543387.html

https://www.cnblogs.com/lanbo203/p/7494587.html
Redis缓存中存入MySQL数据的方案有两种: 方案1:通过MySQL自动同步刷新Redis 这种方案使用MySQL的触发器和UDF函数来实现。当MySQL中的数据发生变化时,触发器会将变化的数据通过UDF函数写入到Redis中,从而实现数据的同步。 方案2:解析MySQL的binlog实现 这种方案通过解析MySQL的binlog来获取数据库中的数据变化,并将解析出来的数据写入到Redis中。当MySQL中有数据写入时,我们可以解析binlog文件,提取出数据变化的信息,然后将这些信息写入到Redis中,从而实现数据的同步。 以下是方案2的示例代码: ```python import pymysql import redis from pymysqlreplication import BinLogStreamReader # MySQL连接配置 mysql_config = { 'host': 'localhost', 'port': 3306, 'user': 'root', 'password': 'password', 'db': 'mydatabase' } # Redis连接配置 redis_config = { 'host': 'localhost', 'port': 6379, 'db': 0 } # 创建MySQL连接 mysql_conn = pymysql.connect(**mysql_config) # 创建Redis连接 redis_conn = redis.Redis(**redis_config) # 创建binlog解析器 stream = BinLogStreamReader(connection_settings=mysql_config, server_id=100) # 监听binlog事件 for binlog_event in stream: if binlog_event.event_type == 'write_rows': for row in binlog_event.rows: # 将数据写入Redis redis_conn.set(row['values']['key'], row['values']['value']) elif binlog_event.event_type == 'delete_rows': for row in binlog_event.rows: # 从Redis中删除数据 redis_conn.delete(row['values']['key']) # 关闭连接 stream.close() mysql_conn.close() redis_conn.close() ``` 请注意,以上代码仅为示例,实际使用时需要根据具体情况进行配置和修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值