总结:资源类动规一般转移方程为f[i][j]=max{f[i-1][k]+s[k+1][j] 即考虑第i个阶段和第i-1个阶段的关系
最外层循环起始位置一般从2开始,避免出现把K个资源分配给0个对象的错误
对于f[1][j]要手动赋初值
注意循环的上下界,初始化等
1、机器分配(machine.pasmachine.in machine.out)
问题描述:
总公司拥有高效生产设备M台,准备分给下属的N个公司。各分公司若获得这些设备,可以为国家提供一定的盈利。问:如何分配这M台设备才能使国家得到的盈利最大?求出最大盈利值。其中M《=15,N〈=10。分配原则:每个公司有权获得任意数目的设备,但总台数不得超过总设备数M。保存数据的文件名从键盘输入。
数据文件格式为:第一行保存两个数,第一个数是设备台数M,第二个数是分公司数N。接下来是一个(M+1)*(N+1)的矩阵,A[2,2]表明了第1个公司分配1台机器的盈利。见样例
输出最大盈利值。
machine.in
5 3
0 0 0 0
1 3 5 4
2 7 11 6
3 9 11 11
4 12 11 12
5 13 11 12
machine.out
22
【思路】基本的资源类动规,f[i][j]表示前I个公司获得j台设备的最优值,转移方程见代码
#include<cstdio>
int n,m,f[20][20],i,j,v[20][20],k;
int maxx(int &a,int b) {if (a<b) a=b;}
int main()
{
freopen("machine.in","r",stdin);
freopen("machine.out","w",stdout);
scanf("%d%d",&m,&n);
for (i=0;i<=m;i++)
for (j=0;j<=n;j++)
scanf("%d",&v[i][j]);
for (i=1;i<=n;i++)
for (j=1;j<=m;j++)
for (k=0;k<=j;k++)
maxx(f[i][j],f[i-1][k]+v[j-k][i]);
printf("%d\n",f[n][m]);
}
2、最少硬币找钱问题(coin.pas)
设有n(1<=n<=100)种不同面值的硬币,各硬币的面值存于数组t[1..n]中,现要用这些面值的硬币来找钱,可以使用的各种面值的硬币个数不限,请计算找出钱数j(1<=j<=10000)的最少硬币个数。
输入文件:coin.in
第一行两个数,为N,J
第二行有N个数,为N种硬币的面值
输出文件:coin.out
只有一行,为最少硬币个数
样例输入:
2 5
1 2
样例输出:
3
【思路】完全背包
#include<cstdio>
int n,i,j,k,s;
int t[100],f[10001];
int main()
{
freopen("coin.in","r",stdin);
freopen("coin.out","w",stdout);
scanf("%d%d",&n,&s);
for (i=0;i<n;i++) scanf("%d",&t[i]);
for (i=1;i<=s;i++) f[i]=30000;
f[0]=0;
for (i=0;i<n;i++)
for (j=t[i];j<=s;j++)
if (f[j-t[i]]+1<f[j]) f[j]=f[j-t[i]]+1;
printf("%d\n",f[s]);
}
3、系统可靠性(xitong.pas xitong.in xitong.out)
问题描述:
一个系统由若干个部件串联而成,只要有一个部件故障,系统就不能正常运行,为提高系统的可靠性,每一不见都装有备用件,一旦原部件故障,备用件就自动进入系统。显然备用件越多,系统可靠性越高,但费用也越大,那么在一定总费用限制下,系统的最高可靠性等于多少?
设系统有n个部件,每个备用件的单价Ck,当部件K装置Mk个此备用件时部件的正常工作概率Pk(Mk),总费用上限C。求系统可能的最高可靠性。其中n<=50
输入:
2 20
3 0.6 0.65 0.70.75 0.8 0.85 0.9
5 0.7 0.75 0.80.8 0.9 0.95
输出:
0.6375
{第一行:n C
第二行:C1 ,P1,0,P1,1