Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
动态规划基础,方程为: f[i][j] = min( f[i - 1][j], f[i][j - 1]) + grid[i][j];
int minPathSum(vector<vector<int> > &grid)
{
int n = grid.size();
int m = grid[0].size();
if (n == 0 || m == 0 )
return 0;
int f[m][n];
f[0][0] = grid[0][0];
for (int i = 1; i < m; i++)
{
f[i][0] = f[i - 1][0] + grid[i][0];
}
for (int i = 1; i < n; i++)
{
f[0][i] = f[0][i - 1] + grid[0][i];
}
for (int i = 1; i < m; i++)
{
for (int j = 1; j < n; j++)
{
f[i][j] = min( f[i - 1][j], f[i][j - 1]) + grid[i][j];
}
}
return f[m - 1][n - 1];
}