Minimum Path Sum

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

动态规划基础,方程为: f[i][j] = min( f[i - 1][j], f[i][j - 1]) + grid[i][j];


int minPathSum(vector<vector<int> > &grid)
{
    int n = grid.size();
    int m =  grid[0].size();
    if (n == 0 || m == 0 )
        return 0;

    int f[m][n];
    f[0][0] = grid[0][0];
    for (int i = 1; i < m; i++)
    {
        f[i][0] = f[i - 1][0] + grid[i][0];
    }
    for (int i = 1; i < n; i++)
    {
        f[0][i] = f[0][i - 1] + grid[0][i];
    }
    for (int i = 1; i < m; i++)
    {
        for (int j = 1; j < n; j++)
        {
            f[i][j] = min( f[i - 1][j], f[i][j - 1]) + grid[i][j];
        }
    }
    return f[m - 1][n - 1];
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值