排序:
默认
按更新时间
按访问量

场景文字检测技巧总结

从事场景文字检测相关的工作有一段时间了,总结了一些经验技巧,下面就在此记录下来,仅供参考。实验篇1.icdar2015数据集由于icdar2015数据集和icdar2013数据集的训练图片均较少,因此,在训练icdar2015数据集的时候,一般融合icdar2013和icdar2015两个数据集的...

2018-05-08 15:48:43

阅读数:80

评论数:1

如何判断深度学习的网络是否work?

写在前面:对于多数从业者而言,从头开始写深度学习程序的情况比较少。多数情况下,都是从Github上下载已有的深度学习的程序,使用自己的数据集进行训练,或者根据需要对程序进行修改。一般官方公开的代码实现与论文接近,而个人开发者公布的代码实现可能与官方论文有所差距。首先要做的一件事就是确保模型本身可以...

2018-05-01 13:47:18

阅读数:62

评论数:0

基于深度学习的目标检测及场景文字检测研究进展

根据本人组会PPT总结整理,复习备用。一.目标检测与场景文字检测定义目标检测:给定一张图片或者视频帧,找出其中所有目标的位置,并给出每个目标的具体类别。场景文字检测:文字检测(Text Detection):对照片中存在文字的区域进行定位,即找到单词或者文本行(word/linelevel)的边界...

2018-03-17 21:19:02

阅读数:1966

评论数:0

[论文笔记]Feature Enhancement Network: A Refined Scene Text Detector

Feature Enhancement Network: A Refined Scene Text Detector intro: AAAI 2018arxiv: https://arxiv.org/abs/1711.04249 创新点: 1.现有问题:只利用3×3的滑动窗口特征和利用高维度...

2017-12-25 21:17:29

阅读数:134

评论数:0

[论文笔记]TextBoxes A Fast Text Detector with a Single Deep Neural Network

TextBoxes A Fast Text Detector with a Single Deep Neural Network 相比于ssd,创新点如下: 1.改变生成的prior boxes的aspect ratios,改为1,2,3,5,7和10。并且设置了vertical of...

2017-12-18 17:28:00

阅读数:177

评论数:0

[资料整理]将场景文字数据集ICDAR2013,ICDAR2015转换为PASCAL_VOC数据集格式

写在前面:常见的目标检测框架,如faster-rcnn,SSD等,一般都提供了对pascal_voc数据集的读取接口。而将目标检测的框架应用到场景文字检测上,往往可以取得不错的效果。那么,接下来,我就介绍一下,将几种常见的场景文字数据集,如ICDAR2013,ICDAR2015,ICDAR2017...

2017-12-16 21:11:45

阅读数:1882

评论数:6

[资料整理]场景文字检测资料

文字检测与识别资料 目录 个人主页数据库基本信息数据库功能数据库的论文和相关链接开源代码博客资源     个人主页 白翔,黄伟林,VGG,Lukas Neumann,金连文,刘成林,殷绪成,Hojin Cho 数据库基本信息 数据库功能 数据库相关链接 ICDAR...

2017-12-15 22:00:50

阅读数:555

评论数:0

[训练测试过程记录]SSD:Single Shot Detector 用于场景文字检测

介绍用SSD模型进行场景文字检测。举例数据集:COCO-Text。 编译部分: 1.使用cuda8编译时出错 /usr/include/boost/property_tree/detail/json_parser_read.hpp:257:264: error: ‘typ...

2017-12-01 19:20:00

阅读数:1216

评论数:3

[论文笔记]Single Shot Text Detector with Regional Atterntion

an atterntion mechanism an automatically learned attention map 抑制背景干扰

2017-11-30 10:44:59

阅读数:256

评论数:0

[论文笔记]Arbitrary-Oriented Scene Text Detection via Rotation Proposals

Particularly, orientations are incorporated so that the detection system can generate proposals for arbitrary orientation.  与anchor的区别是:可以产生任意方向的prop...

2017-11-28 21:44:26

阅读数:925

评论数:2

[源码分析]Text-Detection-with-FRCN

Text-Detection-with-FRCN项目是基于py-faster-rcnn项目在场景文字识别领域的扩展。对Text-Detection-with-FRCN的理解过程,本质上是对py-faster-rcnn的理解过程。我个人认为,初学者,尤其是对caffe还不熟悉的时候,在理解整个项目的...

2017-11-21 17:58:39

阅读数:875

评论数:0

[训练测试过程记录]Faster-RCNN用于场景文字检测

写在前面:github上面的Text-Detection-with-FRCN项目是基于py-faster-rcnn项目在场景文字识别领域的扩展。 和py-faster-rcnn相比,该项目的主要改动为:将检测类别换成了背景和文字,并且更改了数据集。 对于初学者而言,要实现一个自己的base...

2017-11-06 20:09:00

阅读数:1013

评论数:0

[Tensorflow]2.转置卷积(Transposed Convolution)

一.写在前面在GAN(Generative Adversarial Nets, 直译为生成式对抗网络)中,生成器G利用随机噪声Z,生成数据。那么,在DCGAN中,这部分是如何实现呢?这里就利用到了Transposed Convolution(直译为转置卷积),也称为Fractional Strid...

2017-10-16 11:21:10

阅读数:1858

评论数:4

提示
确定要删除当前文章?
取消 删除
关闭
关闭