场景文字检测技巧总结

从事场景文字检测相关的工作有一段时间了,总结了一些经验技巧,下面就在此记录下来,仅供参考。实验篇1.icdar2015数据集由于icdar2015数据集和icdar2013数据集的训练图片均较少,因此,在训练icdar2015数据集的时候,一般融合icdar2013和icdar2015两个数据集的...

2018-05-08 15:48:43

阅读数:84

评论数:1

如何判断深度学习的网络是否work?

写在前面:对于多数从业者而言,从头开始写深度学习程序的情况比较少。多数情况下,都是从Github上下载已有的深度学习的程序,使用自己的数据集进行训练,或者根据需要对程序进行修改。一般官方公开的代码实现与论文接近,而个人开发者公布的代码实现可能与官方论文有所差距。首先要做的一件事就是确保模型本身可以...

2018-05-01 13:47:18

阅读数:63

评论数:0

基于深度学习的目标检测及场景文字检测研究进展

根据本人组会PPT总结整理,复习备用。一.目标检测与场景文字检测定义目标检测:给定一张图片或者视频帧,找出其中所有目标的位置,并给出每个目标的具体类别。场景文字检测:文字检测(Text Detection):对照片中存在文字的区域进行定位,即找到单词或者文本行(word/linelevel)的边界...

2018-03-17 21:19:02

阅读数:2022

评论数:0

Bounding-box Regression详解

  转自http://caffecn.cn/?/question/160,作者沁心风雨。在此记录,供自己复习。     R-CNN系列文章(Fast/ Faster RCNN)都训练了Bounding-box 回归器来对窗口进行校正,以提高最终的检测精度。那么这样做的好处是什么?具体的又该怎样去做...

2018-03-13 21:09:14

阅读数:57

评论数:0

[论文笔记]Focal Loss for Dense Object Detection

论文:Focal Loss for Dense Object Detection 论文链接:https://arxiv.org/abs/1708.02002 解决问题:提出一种新的损失函数:focal loss。该函数通过减少容易分类的样本的权重,使得模型在训练时更专注难分类的样本,从而改善样...

2017-12-21 21:03:13

阅读数:107

评论数:0

[调参技巧]深度机器学习中的batch的大小对学习效果有何影响?

写在前面:整理自知乎:深度机器学习中的batch的大小对学习效果有何影响? Batch_size参数的作用: 决定了下降的方向。 极端一: batch_size为全数据集(Full Batch Learning): 好处: 1.由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所...

2017-12-19 18:17:17

阅读数:258

评论数:0

[Tensorflow]2.转置卷积(Transposed Convolution)

一.写在前面在GAN(Generative Adversarial Nets, 直译为生成式对抗网络)中,生成器G利用随机噪声Z,生成数据。那么,在DCGAN中,这部分是如何实现呢?这里就利用到了Transposed Convolution(直译为转置卷积),也称为Fractional Strid...

2017-10-16 11:21:10

阅读数:1902

评论数:4

提示
确定要删除当前文章?
取消 删除
关闭
关闭