62. Unique Paths

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right

Example 2:

Input: m = 7, n = 3
Output: 28
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> path(m + 1, vector<int>(n + 1,0));
        for(int i = 1; i <= m; i++){
            path[i][1] = 1;
        }
        for(int j = 1; j <= n; j++){
            path[1][j] = 1;
        }
        for(int i = 2; i <= m; i++){
            for(int j = 2; j <= n; j++){
                path[i][j] = path[i-1][j] + path[i][j-1];
            }
        }
        return path[m][n];
    }
};

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u013250416/article/details/80357720
个人分类: leetcode
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭