[论文笔记]Enhancement of SSD by concatenating feature maps for object detection

论文:Enhancement of SSD by concatenating feature maps for object detection  论文链接:https://arxiv.org/abs/1705.09587 出发点:虽然深度网络的效果会随着feature map数量...

2017-12-31 16:04:55

阅读数:69

评论数:0

ubuntu16.04中安装opencv2.4.9

1. 先下载OpenCV的源码   http://opencv.org/downloads.html 2. 解压到任意目录     unzip opencv-2.4.9.zip 3.进入源码目录     cd opencv-2.4.9 4. 事先安装下列软件     su...

2017-12-27 15:50:37

阅读数:1514

评论数:0

c++二维数组指针

1.定义指针指向二维数组 为了方便根据用户输入动态定义二维数组的行和列,引入变量rowsNum(行),colsNum(列)。 以定义5行4列的二维数组为例, int rowsNum = 4; int colsNum = 5; float** a = new float*[rowsNu...

2017-12-26 21:47:04

阅读数:491

评论数:0

[论文笔记]Feature Enhancement Network: A Refined Scene Text Detector

Feature Enhancement Network: A Refined Scene Text Detector intro: AAAI 2018arxiv: https://arxiv.org/abs/1711.04249 创新点: 1.现有问题:只利用3×3的滑动窗口特征和利用高维度...

2017-12-25 21:17:29

阅读数:134

评论数:0

[论文笔记]Focal Loss for Dense Object Detection

论文:Focal Loss for Dense Object Detection 论文链接:https://arxiv.org/abs/1708.02002 解决问题:提出一种新的损失函数:focal loss。该函数通过减少容易分类的样本的权重,使得模型在训练时更专注难分类的样本,从而改善样...

2017-12-21 21:03:13

阅读数:101

评论数:0

[调参技巧]深度机器学习中的batch的大小对学习效果有何影响?

写在前面:整理自知乎:深度机器学习中的batch的大小对学习效果有何影响? Batch_size参数的作用: 决定了下降的方向。 极端一: batch_size为全数据集(Full Batch Learning): 好处: 1.由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所...

2017-12-19 18:17:17

阅读数:251

评论数:0

[论文笔记]TextBoxes A Fast Text Detector with a Single Deep Neural Network

TextBoxes A Fast Text Detector with a Single Deep Neural Network 相比于ssd,创新点如下: 1.改变生成的prior boxes的aspect ratios,改为1,2,3,5,7和10。并且设置了vertical of...

2017-12-18 17:28:00

阅读数:174

评论数:0

[资料整理]将场景文字数据集ICDAR2013,ICDAR2015转换为PASCAL_VOC数据集格式

写在前面:常见的目标检测框架,如faster-rcnn,SSD等,一般都提供了对pascal_voc数据集的读取接口。而将目标检测的框架应用到场景文字检测上,往往可以取得不错的效果。那么,接下来,我就介绍一下,将几种常见的场景文字数据集,如ICDAR2013,ICDAR2015,ICDAR2017...

2017-12-16 21:11:45

阅读数:1863

评论数:6

[资料整理]场景文字检测资料

文字检测与识别资料 目录 个人主页数据库基本信息数据库功能数据库的论文和相关链接开源代码博客资源     个人主页 白翔,黄伟林,VGG,Lukas Neumann,金连文,刘成林,殷绪成,Hojin Cho 数据库基本信息 数据库功能 数据库相关链接 ICDAR...

2017-12-15 22:00:50

阅读数:545

评论数:0

[资料整理]Caffe:GPU Optimization简介

CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构ISA以及GPU内部的并行计算引擎。 开发人员现在可以...

2017-12-06 22:43:14

阅读数:117

评论数:0

[训练测试过程记录]SSD:Single Shot Detector 用于场景文字检测

介绍用SSD模型进行场景文字检测。举例数据集:COCO-Text。 编译部分: 1.使用cuda8编译时出错 /usr/include/boost/property_tree/detail/json_parser_read.hpp:257:264: error: ‘typ...

2017-12-01 19:20:00

阅读数:1199

评论数:3

提示
确定要删除当前文章?
取消 删除
关闭
关闭