hdoj 4998 平面旋转

hdoj 4998

题意:一个平面绕若干点旋转若干角度后相当于绕某一点旋转某一角度,求这个点和这个角度。

思路:可以根据线代转化为矩阵变换,但是本蒟蒻并不会。。

任选一直线(可以表示为点或向量)模拟旋转,旋转角度就是所有转角的和,之后知道原直线、目标直线、旋转角度,就可以反推旋转公式解个方程得到旋转点了。

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;

const double eps = 1e-6;
struct Point {
    double x, y;
    Point(){}
    Point(double a, double b): x(a), y(b){}
    void input() {
        cin >> x >> y;
    }
    Point operator -(const Point &a) {
        return Point(x - a.x, y - a.y);
    }
    Point operator +(const Point &a) {
        return Point(x + a.x, y + a.y);
    }
    double length() {
        return sqrt(x * x + y * y);
    }
};
const double PI = acos(-1.0);
double dot(Point a, Point b) {
    return a.x * b.x + a.y * b.y;
}
double det(Point a, Point b) {
    return a.x * b.y - a.y * b.x;
}
Point rotate(Point a, double r) {
    Point ra(cos(r), sin(r));
    return Point(a.x*cos(r)-a.y*sin(r), a.x*sin(r)+a.y*cos(r) );
}
int cmp(double x) {
    if(fabs(x) < eps) return 0;
    if(x > 0) return 1;
    return - 1;
}
int main() {
    int t;
    cin >> t;
    while(t--) {
        Point b(0, 0);
        int n;
        cin >> n;
        double sum = 0;
        for(int i = 0; i < n; i++) {
            Point p;
            double angle;
            p.input(), cin >> angle;
            b = p - rotate(p - b, angle);
            sum += angle;
        }

        while(sum - 2*PI > 1e-6) sum -= 2*PI;
        double x, y;
        if(cmp(sin(sum)) == 0) {
            x = b.x / (1 - cos(sum));
            y = b.y / (1 - cos(sum));
        }else {
            double t = (1 - cos(sum)) / sin(sum);
            y = (b.y * t + b.x) / ((1 - cos(sum)) * t + sin(sum));
            x = (b.x - y * sin(sum)) / (1 - cos(sum));
        }
        printf("%.9f %.9f %.9f\n", x, y, sum);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值