LoRA(Low-Rank Adaptation of Large Language Models,大型语言模型的低秩适应)是微软研究员提出的一种新颖技术,旨在解决微调大型语言模型的问题。具有数十亿参数的强大模型,如GPT-3,要对其进行微调以适应特定任务或领域的成本非常高。LoRA提议冻结预训练模型的权重,并在每个Transformer块中注入可训练层(称为秩分解矩阵)。这大大减少了可训练参数的数量和GPU内存需求,因为大部分模型权重不需要计算梯度。研究人员发现,通过专注于大型语言模型的Transformer注意力块,LoRA的微调质量与完整模型的微调相当,同时速度更快,计算需求更低。
尽管LoRA最初是为大型语言模型提出的,但这种技术也可以应用在其他地方。在Stable Diffusion微调的情况下,LoRA可以应用于与描述它们的提示相关的图像表示之间的交叉注意力层。LoRA微调的优点包括:
- 训练速度更快
- 计算需求更
LoRA技术通过在每个Transformer块中注入可训练的秩分解矩阵,减少大型语言模型微调的参数数量和GPU内存需求。该方法在保持微调质量的同时,显著提高了训练速度和降低了计算成本,适用于GPT-3等模型。LoRA还可应用于图像表示的交叉注意力层,结合其他技术如Dreambooth,提供了一种快速、低成本的微调解决方案。
订阅专栏 解锁全文
704

被折叠的 条评论
为什么被折叠?



