LLM-微调:LoRA 模型合并与保存【将利用lora训练后的lora模型与基座模型合并,将新合并的模型用作独立模型】【可以将基座模型合并多个lora模型】【也可不合并模型,前向推理计算后再合并结果】

本文介绍了LoRA技术,用于大模型的低内存微调。通过低秩分解更新矩阵,减少训练参数,提升效率。LoRA模型可以合并,形成独立模型,甚至合并多个LoRA模型以处理不同任务,而不会显著增加推理延迟。同时,介绍了如何保存合并后的模型。
摘要由CSDN通过智能技术生成

一.引言 I. Introduction

LLM 使用过程中最常用方法之一就是通过 LoRA 基于自己的数据对大模型进行微调,本文简单介绍 LoRA 原理以及如何合并多个 LoRA 模型并保存。

peft==0.4.0
transformers==4.29.1

二.LoRA 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值